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Abstract

In this paper we investigate the Cauchy problem for hyperbolic
operators with double characteristics in the framework of the space
of C* functions. In the case where the coefficients of their principal
parts depend only on the time variable and are real analytic, we give
a sufficient condition for C*° well-posedness, which is also a necessary
one when the space dimension is less than 3 or the coefficients of the
principal parts are semi-algebraic functions ( e.g., polynomials) of the
time variable.

1. Introduction

We say that a ( partial differential) operators has time dependent co-
efficients if the coefficients depend only on the time variable. In [13] we
studied the Cauchy problem for hyperbolic operators with double characeris-
tics which have time dependent coefficients, and gave sufficient conditions
for the Cauchy problem to be C'*° well-posed, assuming that the coefficients
of the principal parts are real analytic functions of the time variable.

In this paper we shall study the Cauchy problem for hyperbolic operators
with double characteristics in the case where the principal parts have time
dependent coefficients and the coefficients of the lower order terms depend on

2000 Mathematics Subject Classification. Primary 35L30; Secondary 351.25.

Key Words and Phrases. Cauchy problem, Hyperbolic, C*° well-posed, Double char-
acteristics.

This research was partially supported by Grant-in-Aid for Scientific Research (No.
16K05222), Japan Society for the Promotion of Science.



both the time variable and the space variables. And we shall give sufficient
conditions for C'*° well-posedness under the assumptions that the coefficients
of the principal parts and the subprincipal symbols are real analytic in the
time variable. These conditions are also necessary conditions if the space
dimension is less than 3, or if the coefficients of the principal parts and the
subprincipal symbols are semi-algebraic functions ( e.g., polynomials) with
respect to the time variable. Our results are extensions of the results given
in [12] to higher-order hyperbolic operators.

Let m € N and P(t,z,7,8) = 7" + 3700, D710« @ja(t, )7 7€ be a
polynomial of 7 and & = (&, - ,&,) of degree m whose coefficients a; o (t, )
belong to C*°([0,00) x R™). Here a = (g, -+ , a) € (Z1)™ is a multi-index,
laf = oy and §* = & -+~ &y, where Zy, = NU{0} (={0,1,2,3,--- }).
We consider the Cauchy problem
(CP) P(t,x, Dy, Dy)u(t,x) = f(t,z) in [0,00) x R™,

Dju(t, x)]i—o = uj(z) mR* (0<j<m—1)

in the framework of the space of C* functions, where D, = —id/0t (= —id;),
D, =(Dy,---,D,) =—i(0/0x1,---,0/0x,), f(t,x) € C([0,00) x R™) and
uj(x) e C*(R") (0<j<m-—1).

Definition 1.1. The Cauchy problem (CP) is said to be C'* well-posed
if the following conditions (E) and (U) are satisfied:

(E) For any f € C*(]0,00) x R") and u; € C*(R"™) (0 < j <m—1) there
is u € C*([0,00) x R™) satisfying (CP).

(U)If s > 0, u € C=([0,00) x R™), Dlu(t,x)|;—o =0 (0 < j <m—1) and
P(t,z, Dy, Dy)u(t, z) vanishes for ¢t < s, then wu(t,z) also vanishes for
t<s.

We assume throughout the paper that

(A-1) a;q(t,z) = ajo(t) and a;, () is real analytic in [0,00) if 1 < j <m
and |o| = .

From (A-1) there are a complex neighborhood 2 of [0, 00) (in C) and dy > 0
such that [—dg,00) C Q, QN {X € C; ReA < T} is compact for any 7" > 0
and a;,(t) (1 <j <m, |a] = j) are regarded as analytic functions defined
in Q. Put

m

pt, 7€) ="+ af(t, )" (= Pult,T,€)),
j=1



a?(t,f) = Z aja ()€,

|al=j
Py(t,z,1,§) = Z Z ajo(t,0)T™E* (0<k<m—1).
j=m—k |a|=k+j—m
We also assume that the following conditions are satisfied:

(H) p(t,7,€) is hyperbolic with respect to J = (1,0,---,0) € R""! for
S [—(50,00), i.e.,

p(t, 7 —1,§) #0 for any (t,7,£) € [~do,0) x R x R".

(A_2) aj,a(t7x> S Cw([_éoaoo) X Rn) ( 1 <j<m, |Oé‘ =] - 1)7 and for
any R > 0 there are Cr > 0 and Ar > 0 such that
0Fa;a(t,z)| < CrARK!
fl<ji<m,loj=5j—-1,ke€Z ,te[-6pR,zreR"and |z| <R

(D) The characteristic roots are at most double, i.e.,

9zp(t, 7,6) # 0
if (t,7,€) €[0,00) x R x $" " and p(t, 7,€) = 0,p(t, 7, &) = 0,

where S"7t = {£ e R™; [{] = 1}.

Note that the assumption (A-2) is satisfied if a;,(t,z) (1 < j < m, o] =
j — 1) are real analytic in [—dp, 00) x R"™. Let I'(p(¢, -, -), ) be the connected
component of the set {(7,&) € R"™\ {0}; p(t,7,£) # 0} which contains ¥,
and define the genralized flows K (foﬁmo) for p(t, ,&) by

Ki

(to z0

) = {(t(s), z(s)) € [0,00) x R"; &5 > 0 and {(¢(s), z(s))} is
a Lipschitz continuous curve in [0, 00) x R" satisfying
(d/ds)(t(s),x(s)) € T'(p(t,-,-),?)* (a.e. s)and
(4(0),2(0)) = (to, ")},
where (tg,2") € [0,00) x R® and T* = {(t,z) € R""™ ¢tr +x-& > 0 for
any (1,¢) € I'}. K (J;WO) ( resp. K (_to’xo)) gives an estimate of the influence

domain ( resp. the dependence domain) of (¢y, %) ( see Theorem 1.2 below).
To describe conditions on the lower order terms we define the polynomials

h;(t, 7, §) of (1,€) by

p(t, T —iv, )] Zfﬂhm Lt 7€)

7=0



for (¢,7,£) € [0,00) x R x R" and v € R.

Since |p(t, 7 — i, &)* = [T, (7 — A (t,8))? ++%), we have

(1.1) hi(t,€) = Z H Jz (t § (1<k<m),

1<j1<je<--<jg<m I=1

where p(t,7,£) = [[L1(7 — A;(t,€)). Let R(&) be a set-valued function,

whose values are discrete subsets of C, defined for ¢ € S"! satisfying the
following;:

For any 7" > 0 there is Ny € Z, such that

(1.2) #INER(E); ReA€[0,T]} < Ny for £ € S™1.

Here #A denotes the number of the elements of a set A. The following
condition is corresponding to a so-called Levi condition:

(L) For any T"> 0 and x € R™ there is C' > 0 satisfying

mm{ min [t~ 1}|sub o(P)(t,2,7,)] < Chyr(t,7,€)/?

for (t,7,£) € [0,T] x R x "1,
where mingeg) [t — s| = 1if R(§) = 0.
Here sub o(P)(t,x,7,&) denotes the subprincipal symbol of P(t,x, Dy, D,),
1.€.,
sub o(P)(t,x,7,&) = Pp_1(t,z,7,&) + 8t87p(t 7,€).

Concerning sufficiency of C'* well-posedness, we have the following

Theorem 1.2. Assume that the conditions (A-1), (A-2), (H), (D) and (L)
are satisfied. Then the Cauchy problem (CP) is C* well-posed. Moreover, if
(to,2°) € (0,00) x R™ and u € C*=([0,00) x R™) satisfies (CP), u;(z) =0
near {z € R"; (0,z) € K5 .0} (0<j <m—1) and f =0 near K o (in
[0,00) x R™), then (ty,z°) ¢ supp u.

Remark. If m < 2, then the theorem is valid under the assumptions (A-1),
(H)’, (D) and (L), where the condition (H)" is defined below ( see [12]).

Next we shall give results on necessity for C* well-posedness. Instead of
the condition (H) we assume that



(H) p(t,7,€) is hyperbolic with respect to ¥ for t € [0, 00).
Write

m

p(t,7.€) = [[(r = \i(t,€)).

j=1
Mj,k(t7€> = ()‘j<ta 5) - Ak(t7§))2a
where A1 (t,€) < Ao(t,€) < -+ < Ap(t,€). Define {D,(t, &) }1<u<m by

I[I = mut.©)) ="+ (=1)'Dy(t. )7,

1<j<k<m

where M = (7). Note that Dy (t,€) (= D(t,€)) is the discriminant of
p(t,7,€) = 0in 7. Putting Dy(t,£) = 1, for each £ € S ! there is r(§) € Z,

such that 0 < r(§) < M and

DM(tag) == DMfr(§)+1(t7€) =01in t
DM—T(g) (t7§> 5—'& 0 in .

We define
Ro(€) = {(ReN)s; A€ Q, Dype)(A, &) =0} for & € S,

where a; = max{0,a} for a € R. By Lemma 2.2 below we may assume that
for any 7" > 0 there is Ny € Z, satisfying

#(Ro(6)N[0,T)) < Np for £ € S™7 1,

modifying € if necessary. Let U be a semi-algebraic set in R, and let h(t)
be a function defined in U. For the definition of semi-algebraic sets we refer
o [14], for example. We say that h(t) is semi-algebraic in U if the graph
{(t,h(t)) € R%* t € U} is a semi-algebraic set. For basic properties of semi-
algebraic functions we refer to [14] and [15].

Theorem 1.3. Assume that the condition (A-1), (A-2), (H)" and (D) are
satisfied. Moreover, we assume that the a;(t,z) (0 < j <m—1, |a| =
J,7 — 1) are semi-algebraic in [0, 00) for each x € R™ when n > 3. Then the
condition

(L)o for any T' > 0 and x € R" there is C' > 0 such that

inq min [t — < 12
mln{serglzlol(l@ It — s, 1}|sub o(P)(t,x,7,6)| < Chy_1(t, T,€)

for (t,7,€) €[0,T] x R x S"*



is satisfied if the Cauchy problem (CP) is C*° well-posed.

Remark. (i) We directly prove that the condition (L)g is satisfied if the
condition (L) is satisfied ( see Lemma 4.1). (ii) If m < 2 and n < 2, then
the theorem is valid under the assumptions (A-1), (H)" and (D) ( see [12]).
Moreover, if m < 2 and n > 3, the theorem is valid under the assumptions
(A-1), (H)’, and (D) and the assumption that a;,(t,z) (0 < j < m —1,
|a| = j) are semi-algebraic in [0, 00) for each x € R".

The remainder of this paper is organized as follows. §2 and §3 will be
divided into subsections. In §2 we shall prove Theorem 1.2. Theorem 1.3
will be proved in §3. In §4 we shall give some remarks.

2. Proof of Theorem 1.2

In this section we shall give the proof of Theorem 1.2, deriving microlocal
energy estimates. To obtain local energy estimates from microlocal ones we
shall adopt ideas used in [7], although we can not directly use the results in
[7]. Assume that the conditions (A-1), (A-2), (H), (D) and (L) are satisfied.

2.1. Preliminaries

Let U be an open set in R", and let a(t,) be a real analytic function
defined in [—0,d] x U, where § > 0. Lemma 2.2 below is a key lemma. To
prove Lemma 2.2 we need the following

Lemma 2.1. Let S be a subset of (Z,)", and let 3° € S. Assume that
there is 8t € S satisfying B° £ B, i.e., there is k € N with k < n such that
B2 > Bl Then there are v° € (Zy)" and a® € S such that o # 3° and

(2.1) P <a-1? foracS\{a"}.

Proof. Let us prove the lemma by induction. If n = 1, then, choosing
(= oY) = mingesa ( € Zy) and v° = 1 ( € Z,), we can show that the
lemma is valid. Let [ € N, and suppose that the lemma is valid when n = [.
Let n = [ + 1. By assumption on S there are 8! € S and k € N with k <n
such that ) > ;. We may assume that k = n, i.e., 82 > }. Put

_ o — i 0
S1={a€s; an—rgléglﬁn (< B,)}-

Note that 8° ¢ S;. Let us first consider the case where there is o € S; such
that o’ < «a for any a € S;. If we chose 1 = (1,---,1,1) € (Z,)", with

6



[ = a? + 1, then a® # 8° and (2.1) is satisfied. Indeed, it is obvious
thata 0 < for « € Sy \ {a’}. For a € S\ S; we have

n—1
a-l/o2la2+l>la2+2a2:ao-y0.

k=1
Next consider the case where for any S € S; there is a € 5; satisfying
B £ . Fix f° € S;. Then there is ' € S such §° £ 3. We write
o = (a1, ,an1) for a = (a1, ,ay), and put S| = {o’ € (Z+)” 1,
o € Si}. Then we have S C (Z,)""', ¥, 3" e S, and B £ (V.
by induction assumption there are 7% E (Z,)"' and &” € S} such that
~O/ 7& 60/ and

a” - <o - fora €5\ {a"}.

Taking 10 = (0%,1), 1 = &” - #” + 1 and a° = (&%, £°), we have

a1’ <a-1? forac S\ {a’,

a- 1’ >0 +1>a’ 10 forae S\ S

This proves the lemma. ]

Put

- / a(t.€)P dt (> 0).

Lemma 2.2. There are mg € N and C; > 0 (
any € € U there are m(&) € Z, and ai(€) € R (1
m(§) < mg and

Co ' VREI™D + a0 -t e (§)] < Jalt,€)] < Cov/k(€),
OFa(t, &) < Cxv/k(€) (k€ Zy)

Z.) such that for
<

k€
< k < m(§)) satisfying

fort € [=4,6], with a modification of & if necessary.

Remark. (i) Let £ € U. It is obvious that a(t,£°) # 0 in ¢ if and only if
k(€%) #£ 0. So, if k(£%) # 0, then one can apply the Weierstrass preparation
theorem to a(t,€) at (t,€) = (0,£°) to prove the lemma with U replaced by a
neighborhood of €°. (ii) a(t,€) is regarded as an analytic function defined in
a complex neighborhood of [—d, 6] x U. Then from Lemma 2.2 and its proof
there is ¢’ > 0 satisfying

#{Ne€C; Rede[-0—0,0+0], |[ImA < and a(\, &) =0} <mg
if ¢ € U and a(t,€) # 0 in ¢.



(iii) Assume that a(t, &) > 0 for (t,&) € [—§,8] x U. Then we can prove the
lemma with /() replaced by

R(E) = / alt, €) dt,

using (&) instead of k(&) in the proof below.

Proof. 1f k(§) = 0, then the lemma becomes trivial. So we may assume
that x(€) #Z 0. Let €2 € U. We apply Hironaka’s resolution theorem to ()
( see [1]). Then there are an open neighborhood U(£Y) of £°, a real analytic
manifold [7(50), a proper analytic mapping ¢ = p(£°): [7(50) Su— pa)(=
o(a;£%)) € U(£°) satisfying the following:

(i) ¢: UE)\ A = U(€° \ A is an isomorphism, where A = {¢ € U;
k(€) =0} and A = o 1(A).

(i) For each p € U(£°) there are local analytic coordinates X (= X?) =
(X1, X)) (= (X7, -+, XP)) centered at p, r(p) € Z with r(p) < n,

sp(p) € N (1 <k < r(p)), a neighborhood U(&%p) of p and a real
analytic function e(X) in V(€% p) such that e(X) > 0 for X € V(£%p)

and
r(p) N
(22) r(p(@) = e(X (@) [ [ Xu(@)**® (@ e UEp)),
where V(€% p) = {X(a); @ € U(&%p)} and [[}%)--- =1 if r(p) = 0.

Here V(€% p) is a neighborhood of 0 in R" and we have used the fact
that x(§) > 0. Define ¢ (= @(£%p)) : V(% p) — U(E) by 4(X (@) (=
G(XP(a); €% p)) = ¢(a) (= p(u;€°)) for u € U(%p). Let Up(£") be a
compact neighborhood of € in U(£%), and put Up(£%) = o 1 (Up(£%)). Fix
p € Up(£9), and put

a(p) = (Sl(p)a ce ,Sr(p)(p), 0, 70) € (Z-l—)n

We write a(t, p(X)) as

23)  alt5(X) = Y ealtin) X, caltip) = - 3Kalt, 3(X))x=0

«

Put
Sp={a € (Z4)"; calt;p) Z0in t}.

8



It follows from (2.2) that for v = (v, ,v,) € (Z4)"

5
(2.4) / la(t, (X)) dt|x,=sk (1<k<n) = O(sza(p)"’) as s | 0.
0

Suppose that there is ' € S, satisfying a(p) £ 8'. Then Lemma 2.1 with
S = S,U{a(p)} and 5% = a(p) implies that there are 1° € (Z,)" and o’ € S,
such that a® # a(p) and

(2.5) a0 <a- 1t foraeS,u{alp)}\{"}.

(2.4) and (2.5) with a € S, yield a® - ° > a(p) - v°, which contradicts (2.5)
with a = a(p). Therefore, for o € S, we have o > a(p). This, together with
(2.2) and (2.3), gives a(p) € S,. So we can write

(2.6) a(t, §(X)) = XV (cagy (t; p) + blt, X)),
where b(t, X; p) is real analytic in (¢, X') and satisfies b(¢,0;p) = 0. Putting

a(t, X;p) = ca@)(t;p) + b(t, X;p),

we can apply the Weierstrass preparation theorem to a(t X;p) at (t X) =
(0,0). Therefore, there are 6(p) > 0, a neighborhood V (p) of 0 in V(% p),
m(p) € Z,, a real analytic function c(¢, X;p) in [—d(p), d(p)] x ( ) and real
analytic functions a,(X:p) in V(p) ( 1 < k < m(p)) such that c(t, X;p) #0
and

2.7)  a(t, X;p) = c(t, X;p)(t™P + ay (X; p)t" P 4o 4 ) (X D))

in [~8(p),3(p)]x V(p). Note that (p), V(p), m(p) c(t, :p) and the a;,(X; p)
also depend on €°. Put U(p) = (XP) ' (V(p ¢%p)). Since U is
compact, there are N € N and & € U (1 < j § ) such that U C
U;.Vzl (}O(fj). Here A denotes the interior of A ( € R™). Since Up(&) is
compact, there are P; € N and p** € Up(¢') (1 < k < P;) such that
UO(SJ)CU LU(p*). Let 1< j < Nand1<k< P (22),(2.6) and (2.7)
for p = p/* give, with Cy > 0,

1\/1% X gj p]k>>|tm(p] (X p] )tm(pﬂk 1—0—--~+am(pj,k)(X;pj’k)|
< la(t, §(X; €7, p™))| < com (X: €7, i),
07 a(t, §(X; €7, p™))| < Cin/K(2(X; &0, p7%)) - (€ Zy)
for (t,X) € [—6(p™*), 6(p™*)] x V(p**), which proves the lemma. O

9



Let k,x" € R, and let I be an interval of R. We say that a(t,z,§) €
vs(I x T*R") if a(t,x,§) € C°(I x T*R") and

(2.8) DI DEOga(t, w,€)| < Cj o p(e)r Pl

for (t,z,) € I x T*R™ and any j € Z; and o, € (Z;)", where () =
(1+[£]?)Y2? and 0 < p,d < 1. When a(t, z, ;) also depends on a parameter
g, we say that a(t,z,&¢) € S5s(1 x T*R™) uniformly in € if the Cj, 5 in
(2.8) with a(t,z,&) replaced by a(t,z,&;€) can be chosen so that they do
not depend on e. Moreover, we say that a symbol a(t,z,7,&) € Si’{”l if
a(t,z,7,§) = Zgi:]o a;(t,z,&)77 and the a;(t,x, &) are classical symbols and
a;(t,z,€) € ng“lfj(R x T*R™), where [k] denotes the largest integer < &
and Sﬁ’&l = {0} if k < 0. We also write Sty = Sfy and S{'5™ =N, cr f””{”l.
When a(t,z,7,&¢e) = Zg’io a;(t,x,&e)m? depends on a parameter e, we
say that a(t,z,7,&¢) € Si’(f/ uniformly on ¢ if the a;(t,z,&; ) are classical
symbols and a;(t,z,&;¢) € Sfﬂi{”/—j(R x T*R"™) uniformly in . From the
assumption (D) there are 6; > 0, Ny € N, open conic sets C; and C; in
R*\{0}, 1 € Zy (1 <j < No), pjlt,7,6) €Sty (1< j < No, L <k <)
and pj, 41(t,7,6) € 8170_2” (1 <j < Ny) such that 2r; < m, the p; (¢, 7,§)
are positively homogeneous in (7, &) for |£] > 1/4, 36; < do, UZN:OO Cro D S"
Cjo €Cj, and
rit1

(29) p(taTa 5) = H ﬁj,k(ta’ra f)

for (t,7,€) € [~201,40,] x R x C; with ¢ > 1/4,
(2.10) {7 €C; pju(t,7,6) =0}N{r € C; pju(t,7,6) =0} =0
£k #1, (,6) € [~201,46,] x C; and [¢] > 1/4,
OrPjr+1(t, 7,6) # 0
if (t,7,€) € [-201,401] x R x Cy, [§] > 1/4 and p;,,41(¢,7,6) = 0

(1< 4 < Ny), where pjp41(t,7,§) = 1if m —2r; = 0 and p(t,7,¢) =
Pjry1(t,7,€) if 7; = 0. Here A € B means that the closure A of A is

compact and included in the interior B of B for a bounded subset A and
a subset B of R™. For conic sets C; and C; in R" C; € Cy means that
C; N S™ ! @ Cy. Denote by p;i(t,7,€) the pricipal symbol of p;x(t, T, &)
(1<j <Ny, 1<k<r;+1). Sowe have

ﬁj,k(t>7—7 5) = pj,k(taTa 5) fOI' |€’ 2 1/4

10



We assume that the p;(t,7,€) are not strictly hyperbolic in 7 for (¢,§) €
[—281,481] x (C; NS™1), and that

{r e C; (t,¢) € [-26,401] x (C; N S" ), pw(t,,€) = 0}
N {’7' S C, (t,f) € [—2(51,451] X (EJ N Snil), pj’l(t,T, f) = 0} =0

for 1 <k <1 <r;+ 1, modifying 6, and C; if necessary. Moreover, we can
write

Pik(t, 7€) = (T = bjn(t, )" — aju(t,€) (1 <k <y,
where a; ;(t,£) > 0 and the b, 4 (¢, ) are real-valued. Choose O(t) € £¥/2(R)

so that
)1 (t<3/2),
o) = {O (t>2).

Here f(t) € £¥H(D) ( € C*(D)) means that for any compact subset K of
D there are positive constants C' and A satisfying

0°f(z)| < CAl(l)® for o € (Z4)" and € K,

where D is an open subset of R” and s > 1. For h > 0 we define ©(¢)
O(t/h) and ©,(&) = O,(|¢]). Choose p(z) € EB/ZH(R™) so that supp p
{r € R" |z| < 1}, p(x) > 0 and [g, p(x)de = 1. We put p.(x)

e "p(e7'x), and define

N

alts i ,) = 06, (~1) [ pula = )yl = R)asa(t. ) dy
for (t,7) € R"™™ R > 1 and ¢ € (0,1] when 1 < j < m and |a| =
j—1. Fix R > 1. It is easy to see that a;,(t,z;R,e) € EF/Z(RMD),
supp ajo(t,; R,e) C {z € R"; |z| < R+2+¢} and for T' > R + 2 there are
positive constants C'(R,T) and A, which are independent of €, such that

|8fafaj7a(t, z; R,e)| < C(R, T)A?(A/s)“"k:!(5!)3/2

for e € (0,1], k € Zy, B € (Z.)", t € [-361/2,T] and = € R", where
1 <j<m, |af=j—1and Az is the constant in (A-2). We also choose
p'(t) € EB/Z(R) so that suppp' C {t € R; 0 <t < 1}, p*(t) > 0 and
2 pt(t)dt =1, Put pL(t) = e p(e7't). When 2 < j <m and |of < j—2,
we extend a4 (¢, ) for t <0 as a;4(t,z) € C°(R"™), and define

aja(t, z; R,€) = Os, (—t) / pe(—t + s)pe(x — 1)O(ly| — R)a;a(s,y) dsdy

Rn+1
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for (t,7) € R"*!. Then we have a;,(t, 7; R,¢) € E¥/2H(R™1) and supp a; 4
(t,;R,e) C{zr e R" |z| < R+2+¢}if2<j<mand |o|] <j—2 Put

m

‘Pm(tv x77—7§; R? 6) - ﬁ(t77—7 5) = H(T - 651(_t)>\k(t7€))7
k=1
P (t,z,7,&; R, ) = O, (t Z Z ajolt, o Roe)T™ 7€
J=1 |a|=j-1

<@5l< )651(_t>XR,€(x> - 1)ataTﬁ(t7 T, 5)7

Blt, e, 6 Roe) = Oalt) Z Y GaltaRe)rm e

j=m—k |a|=k+j—m

(0<k<m-—2),

l\'.)l@

m

P(t7x77-7§; Rag) = me—j<t7$77—7£; R7€>7

J=0

where Xge(2) = [gn pe(® — y)O(ly| — R) dy. It is easy to see that, for any
k€Z+and6€(Z+) s

(2.11)  OFOPa; o (t,; R, e) — 0FOP (O5 (—)O(|x| — R)a,q(t, 7))
uniformly in (—o0,26d;] x R™ as ¢ | 0,
(2.12)  Pxre(x) = 0°O(|z| — R) uniformly in R™ as ¢ | 0,

where 1 < j <m and |a| < j. We also put

P(t,z,7,&; R) = (t7’§+Zijth§R)
7=1

P 1(t,z,7,&; R) = O5,(1)Os, (—t)O(|z| — R) P (t, z,7,§)
+5(05,(10(1s] — R) ~ 12041, 7€)
Pult, 7,7, B) = 05, (005, (~1)0(la] ~ R)Plt,7,7,6) (0<k<m—2)
Note that
P(t,z,7,§)
if 0 <t <36,/2 and |z < R+3/2,

i
p(t7 T, g) - §ataﬂ'p<t7 T, g)
if t > 26, or “t > —361/2 and |z| > R+ 2",

P(t,x,7,&; R) =

12



P(t,l’, 7_75; R7 5) = p(ta T, 5) - %atan(t7T7 5)
if t > 20, or “t > —301/2 and |x| > R+ 2+ ¢”,
(2.13)  sub o(P(:; R,¢))(t,x,7,§)

— 0,1 /R " pe(e — )0(y| — Rysub o (P)(t,y.7.€) dy

if ¢ > —35,/2.
We factorized p(t, 7,€) as (2.9). By the factorization theorem we can write

2.14) P(t,z,7,& R,e) =P;1(t,x,7,&; R,e) o Pio(t,x, 7,&; R, €)o
2 7,
o Pipoi(t, o, 7, & Rye) + Ryt x, 7, & R, €)

for 1 < j < Ny, (t,z,7,€) € [-30,/2,401] x R* x R x (C; \ {0}) and
e € (0,1], where Pj(t,z,7,& R, ¢e) € 81270 uniformly in e (1 < k < ry)
and Pj,,11(t,2,7,& R, ¢) € STTO_QTJ' uniformly in e, the principal symbol of
P;(t,z, 7,6 R, €) is equal to pj(t,7,§) and R;(t,z,7,& R, e) € Sfo_l’_oo
uniformly in ¢ ( see, e.g., [8]). Here we denote by a(t, z, 7,&) o b(t, x, 7,£) the
symbol of a(t, z, Dy, D,)b(t, z, Dy, D,). Since the P;(t,z,7,&; R, €) are given
by using contour integrals in C, “uniformly in £” follows from this construc-
tion. Indeed, let my,my € N, and let p;(7) = [[,2, (7 — A\jx) (j = 1,2) be
polynomials of 7. Assume that

2
m{Aij; 1 S k‘ S mj} = @

i=1

In the construction, for a given polynomial f(7) of degree m; + mg — 1 we
must find polynomials g;(7) (j = 1, 2) of degree m;—1 satistying p; (7)g2(7)+
p2(7)91(7) = f(7). Choose rectifiable simple closed curves v; ( j = 1,2) in
C so that {\;x; 1 < k < m;} C (v;) and the \;; do not belong to (y;+1)
(7 =1,2), where (v;) denotes the domain enclosed by 7; and 73 = ;. Then
g;(1) (j =1,2) are given by

5(7) = 27" () = B DI = N (Mo (V) A

Vi

for 7 € C ( see Lemma 5.10 of [6]). Let us consider the relation between
sub o(P(; R,e))(t,x,7,€) and sub o(Pji(; R, €))(t,x, T,&). Write

Pj,k(t7 z,T, 57 RJ 8) = p],k(ta T, 5) + QJ,k(tu x,T, 57 R? 8)7
qj7k(t’ T, T, 5; R7 5) = qjl',k,O(ta z, f; Ra 5)7_ + qjl',k,l(tv z, g; Ra 5)
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+ qy,k(t z,T, 57 R7 8)

for 1 < j < No, 1 <k <rjandt > —=36/2, where gj,,(t,z,& R, e) €
SLO(RXT*R") uniformly ine (1 =0,1), q?,k(t, x,7,&; R, e) € 811”0_1 uniformly
in € and qjl-’k’l(t,ac,ﬁ; R,e) (1 =0,1) are positively homogeneous of degree [
for |€] > 1/4. We also write

Pj,TjJrl(tu T, T, 57 R7 8) = ﬁj,TjJrl <t7 T, f) + Qj,TjJrl (t7 X, T, 57 R7 5)

for 1 < j < Noand t > —30,/2, where g;,,1(t,2,7,6 R,e) € Sp
uniformly in €.

Lemma 2.3. For1 < j < Ny and (t,z,7,€) € [0,35;] xR"xRx (C;NS"1)
we have

sub o(P(:; R,€))(t,z, 7, &)

Tj—|-1

=> " sub o(Pu(sRe)tx,re)  [[  pult.7.€)

k=1 1<I<rj+1, l#k

7

5 > Aot Oty I piwt ),
1<k<i<r;+1 1<p<r;+1, u#k,l

where {a(t,7,£),b(t,7,£)} = Oralt,7,&) - Ob(t, 7,§) — Oalt, 1,€) - O.b(t, T,&).

Proof. We can prove by induction on r that

(2.15) Pi(t,z,1,8) 0o Py(t,x,7,§) 0+ 0 P(t,x,7,§)

_ {Hﬁk(t777£)—|—2q2(t,l’,7,£) H ﬁl(tﬂ—?g)
k=1 k=1

1<I<r, I#k

DD Y ARNIRT SRR | I AR3)

1<k<I<r 1<u<r, p#k,l
1,—1
SR

where my,---,m, € N, m = my + --- +m,, P(t,z,7,§) = pp(t,7,&) +
ar(t,z,7,§) € S, pe(t,7,§) and ¢ (t,z,7,€) coincide with the principal
symbols of Py(t,z,7,&) and qx(t,x,7,&) for [£] > 1/4, respectively, and
[licy<r ypry - =1if r =2. Since

—ata Hpkmg Zat op(t,m€) - I A8

1<I<r, I#k
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+ % Z (8Tﬁk(t7 T, 5) ' atﬁl(t7 T, 5) + atﬁk (tv T, 5) : aTﬁl(ty T, f))

1<k<I<r

X H ﬁu(t777 6)7

1<p<r, p#k.l

2.15) proves the lemma. O
( p
Let 1 < j < Ny, and write

2
pix(t,7.6) = [ [(m = Mwu(t,€)) (1 <k <ry),
=1
' m—2r;
pj,?“]-—l-l(t? T, 5) = H (T - >\j,7“j+1,u(t7 g))?
pn=1

(2.16)  pjaut, 7,8) =7 = Njpo(t,6) for 1 <k <wr;if {u,v}={1,2},
(217) pjﬂ’j-f-l#(tv T, 5) = H (T - /\j,Tj-‘rl,l/(ta g))

1<v<m—2r;, v#pup

for 1 < p<m—2r;.
Moreover, we put

do :min{‘)\jjk#(t,f) — )\j’l’y(t,f)’; 1<k<l< T + 1, 1< 7 < m;k,
1<v<my, t€0,30] and £ €C; NS},

where mj;, = 2 if 1 <k < r; and mj, 1 = m — 2r;. From (2.10) we have
do > 0. Let 1 <k <r;. It follows from Lemma 2.3 that

(2'18) sub U(Pj,k(';Ru 5))(t7vaj,k(t7£)7f) H pj,l<t7bj,k(t7£>7£)

1<I<rj+1, £k

= sub o(P(-; R,¢€))(t, z,b;x(t, ), §)
+ Z sub o(Pj,(; R, €))(t, x,bk(t,€),€)

1<I<r;+1, Ik

X @j,k(t>£) H pj,u(tybj,k(ta£)>£)

1<p<r;+1, p#k,l

. k=1 ritl
(4
+31{- X Mot . piatt m s
=1 I=k+1
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X H pjvu(ta bj,k(ta g)a g)

1<p<r;+1, p#k,l

i
+5 > {Piw(t, 7,8), it 7. ) Hrmby i)

1<pu<v<rj+1, u#k, v£k

X aj,k(t,ﬁ) H pj,s<t7 bj,k“?f)?&)

1<s<r;+1, s#k,p,v

for ¢t € [0,361]. Note that

(219) afrpj,k(t>7-7 $)|‘r:bj,k(t,£) = 07

(2.20) Okt T, &) |rmb; pir.6) = —0rajk(t, ).

We may assume that d, = inf{|b; (¢, §) —_)\jJ,u(t,f)]; 1 <1<rj+1with
l#k, 1 <pu<mj and (t,€) € [0,30] x (C;NS" 1)} > 0, modifying C; if

necessary. Put .
do = min{do, dl, ce ,dr]-}-

Then we have

ey | TI maltbult.0| < dgme

1<I<r; +1, Ik
for t € [0,36,] and £ € (C;\ {0}). From (2.18) — (2.21) we have the following

Lemma 2.4. There are symbols c;ro(t, %), cjp1(t,€) € STo(R x T*R™)
(1<j<Ny, 1<k<r;) such that
sub U(Pj,k(a R: 5))(ta z, bj,k(ta €)7 g)
= sub O'(P(,R, 5))(taxabj,k(taf)7£)/ H pj7l(t7bj7k(t7£>7§)

1<I<r;+1, Ik
+ ciro(t, 2, 8)a;,(t, &) + cina(t,§)0a;i(t, §)
for 1 <j <Ny, 1 <k<r;and (t,7,§) €[0,36;] x R" x C; with || > 1.

Let Oy be the ring of ( convergent) power series centered at t = 0 in one
variable. We note that O is a principal ideal ring. Define

Mo ={(Bja(t))itial=m_1 € O}’ there are C' > 0 and § > 0 such that
Y BT < Chypa(t, 7,9

j+lal=m—1

fort € 10,6], 7 € R and &£ € "'},

min{ min |t —s|,1
{ain |t =], 1)
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where M' = (mntﬁl) Note that each Op-submodule of O} is finitely gen-
erated ( see, e.g., §6.3 of [5] and [3]). Therefore, there are 1y € N and
BH(t) = (B50(t))jt1al=m—1 € Mo (1 < p < 1g) such that

m, - {i;cmwmx o) €00 (1< <))

By the assumption (L) there are ¢, (t,z) € C*°(]0,36;] x R") (1 < p < rg)
such that

70

(2.22) sub o(P)(t,x,7,&) =Y cult, x)B"(t,7,€),

p=1

where BH(t,1,§) = Zj+|a\:m—1 Bﬁa(t)ﬂf"‘, modifying 4, if necessary. Here
cu(t,x) € C=([0,00) x R") (1 < pu < 1) follows from the construction of
the p*(t,7,£) ( see [3] and the proof of Lemma 3.1 of [12]). Moreover, we
may assume that

min{ min [t — s|, 1}|8"(t, 7, )| < Chy1(t,7,€)"?
sER(E)

for (¢t,7,€) € [0,30;] x R x 8" 1. Instead of the Cauchy problem (CP) we

consider

(CP)/ P(t,l‘,Dt,Dx)u(t,x) = f(t,$) in [0,00) X Rn,
Diu(t,z)|—o=0 inR" (j€Z,),

where f(t,z) € C([0,00) x R") satisfies D! f(t,x)i—o = 0 ( j € Z). Tt is
easy to see that (CP) is also solvable in C*°([0, 00) x R") if (CP)’ is solvable
in C([0, 00) x R™) for any f(t,z) € C*([0, 00) x R") with D! f(t,z)]—o = 0
(7 €Z.). Let f(t,z) € C=([0,00) x R™) satisfy D] f(t,x)i—o =0 (j € Z),

fltz) (£=20), We define

dlet R>1and ¢ € (0,1]. Put f(t,z) =
andlet B2 landec @1 Put 70 =107 (4 ).

(2.23)  fre(t,x) = O, (t)/ ph(t = s)p-(z — y)O(|y| — R) f(s,y) dsdy.

Rn+1

Then we have fr. € E3/2(R"!) and
supp fre C {(t,7) € R"™; 0 <t <46; and |z| < R+2+¢}.
Moreover, we have

(224)  fre(t,x) = s, (DO(le] — R)f(t,) in C(R™) as < | 0.
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To construct solutions to (CP)’ we first consider

P(ty Z, Dt7 Dx: Ra E)URE(ta l’) = fRS(t7 l’),
(CP)Re ’ ’
supp vg. C [0,00) x R™.

It is well-known that (CP)g. has a unique solution v in £13/2}(R"*!), and
that (tg,2°) ¢ suppuvg. if (tg,2°) € (0,00) x R" and fr.(t,r) = 0 near
K g, 20y (N[0,00) x R") (see, e.g., [9]). We shall derive energy estimates for
P(t,x, Dy, D,; R,e). Let v(t,z) € C*(R; H*(R})) satisfy v|t<o = 0, and
put

gre = P(t,x, Dy, Dy R, €)v.

Here H*(R™) denotes the Sobolev space of order s and H*(R") = (,.x
H*(R™). Note that

P(ta z, Dt - Z% Dmu R7 5) (eiwtv) = eiwth,Ev

where v > 1. Let x;(t) € C*(R) ( j =0, 1) satisfy

0 lftS —251 OI‘tZ4(51,

© - 1 if ¢ < 46,
M= N0 it > 56,

1 if —6, <t <30y,
Xo():

Then we have

(2.25) P(t,x, Dy — iy, Dy; R, e)(e " x1(t)v)
= e_w)(l (t)gR,a + [P(ta T, Dt - i’% Dx; R, 5)7 X1 (t)](e_wv%

where [A, B] = AB— BA for operators A and B. Let us estimate ©.,(D,)(e™"
X Xo(t)v). Put

Co = max{4|\;(t,&)]; t € [-261,46,], £ € 5" P and 1 < j <m}.
Suppose that t € [—261,4d1] and [¢| < 2v. If |[7| < Cyy, then there is C; > 0,
which is independent of v and ¢ € (0, 1], satisfying

m

|P(t,x, 7 — i, & Roe)| > |p(t, 7 — 17, )| = Y|Pyt z, 7 — i7, & R, €)|

j=1
> fym . Cl,.ymfl.
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Hereafter the constants do not depend on v > 1 and ¢ € (0, 1] unless stated.
Therefore, we have

[Pt @, —iy,& Rye)| 2 2™ /2 if |7] < Coy and v = 2C4.
Moreover, there is Cy > 0 satisfying

|P(t,x,7 —iv,& Ry e)| > 27 (12 + 42)™2 — Cy(r2 4 4?)m=1/2
> 2—m—1(7_2 + 72)m/2

if |7] > Cyy and v > 2™y, Therefore, there is ¢o > 0 such that

(226) |P(t,l’,7’-’i’7,§;R, €)| > CO<(Ta §)>'T
for (t,z,7,8) € [-201,46;] x R" x R x R" with [£] < 27,

where ((1,€)), = (72 + 72+ |€[*)Y/2. (2.26) implies that P(t,z, 7 —iv,& R, €)
is elliptic in {(¢,z,7,&) € [-261,46;] x R" x R x R"; |£] < 2~v}. It is obvious
that, with some positive constants C; o 3 and C,,
|DEDROLOEP(t, 2,7 — 17,6 R, €)' < Cjpap((r,€))5" 7
for (t,z,7,&) € [-261,46;] x R" x R x R" with [£] < 27,

1080, ()| < Cale)71,

v

where (€)., = (72 + [£]*)Y/2. Define, inductively,

Eo(t7l', T:f; e R7 6) = XO(t)@’Y(é.)P(t7x7 T = Z’Ya 57 Ra 5)_17
Ek(tavavé.;’y; R7 8)
1

= - E ~—'E£d)(t,l’,7',§;’y; Ra 6)P(d)(tvm77—_i77§; R,Z‘:)
(0
GeE(Zy)" 1, |a| =k
0<pu<k—1

X P(t,x,T—i’y,f;R,e)’l (k=1,2,--+),

where f(t,x.7,€) = DIDIOIOE f(t,2,7.€) for & = (j,a) € (Z,)"™ and
B=(l,8) € (Z.)"*'. Then it is easy to see that, with Crap >0,

(227)  |EQ) (ta 7. &7 Ree)| < Gy p{(1 €))7 (€74

for k € Z+7 a = (.]7 Oé) € (Z+)n+17 B = (laﬁ) € (Z+)n+1 and (tvxaTug) S
R x R, Define a Riemannian metric gy in R"*! x R"! by

o) = () + |da|* + ((7,€))7%(dr)* + (€)77|dg|*.
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We can easily prove that gy is uniformly o temperate in . Here we refer to
[4] for the definition of o temperate. And “uniformly in v, ---” implies that
the constants appearing in the definition do not depend on ~, - --. Moreover,
((1,€)), and (€). are uniformly o,g, temperate in 7. (2.27) gives

Ey(t,,7,&7; R ) € S(((7,€))™(€)5 ", g0)  uniformly in v and e.

Here we also refer to [4] for the terminologies and notations. For N € Z, we
put

N
EN(t,2, 7,67 Roe) = ) Ei(t, 2, 7,6 7; R, e)
k=0

(€ S(((7,6));™, go) uniformly in v and ¢).
Then we have
(2.28) EN(t,z,7,&9; Rye) o P(t,z,7 —i,& R, €) — xo(t)O,(€)
€ S((f};Nﬁl,go) uniformly in v and e.
Since EN(t,z,7,&7v; R,e) = 0 if dx1(t) # 0, we have
(2.29) o(EN(t,z, Dy, Dy;y; R, €)[P(t,x, Dy —i7y, Dy; R, €), x1(1)])
S((£)74€)7* o) uniformly in ~ and ¢
for any k € Z,, where o(a(t,z, Dy, D)) = a(t,z,7,£). Let x2(t) € C°(R)
satisfy

Xa(t) =

1 if76,/2 <t < 116,/2,
0 lftégél ort26(51.

Then we have

[P(t7$a D _Z’yv Dx;R7€>7X1(t)]U = [P( ’ )7X1](X2(t)v)

Multiplying (2.25) by ((Dt,DI)>T/1(Dm>£YEN(t,x,Dt,Dx;7; R,¢e), (2.28) and
(2.29) give the following

Lemma 2.5. For anyl € R and any N € N there are positive constants
C; and Cyn such that C; is independent of N and

I{(Dr, Dz))7{D2)!,04(Da) (e X0 (t)0) | L2
< (D). (e X1 () gre) | 2@+
+ CLn{I{(Dy, D2)) (D)™ (€7 xa (8)0)[| L2y
+ [[{(D¢, Do) (D) N (e X2 (t)0) || L2y }-
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Choose x3(t) € C*(R) so that

0 if ¢t <26,
X3<t>={ L=

1 ift> 36,

Then we have

(2'30) P(t7 z, Dt’ Dx; R7 8)()(3(15)1)) = XS(t)gR,s + [PR,ea XS]Ua

where Pr. = P(t,x, Dy, D,; R, ¢). Since supp xs C [201,00), (2.30) yields

(2.31) <p(t, Dy, D,) — %Op(at(?Tp(t, T, 5))) (xs(t)v)
= XS(t)gR,s + p(t, Dta D:L‘) - %Op(&t&p(t, T, 5))5 X3] v,

where Op(a(t, z,7,€)) = a(t,x, Dy, D,,). Since p(t, Dy, D,.) — (i/2)Op(0:0;p(t,
7,€)) has time dependent coefficients and DF(ys(t)v(t,z)) = 0 for t < 24,
and k € Z,, we can apply Lemma 3.2 of [13] to (2.31), replacing (D,) by
(Dg)~. Therefore, there are C' > 0 and 14 > 0 such that

m

(2.32) D D) FDE (xs(t)u(t, ) 1@

k=0

t
< C{/5 H<D$>EY+VOX3(S)9R,E(57 :U)”%Q(R;) ds
261

+ / H <Dz>§y+1/0 [p - (2/2)01)(82587—]7)7 X3]U<t7 x)|t=3H%2(Rg) ds}

261

for [ € R and t € [201,601]. Note that x3(t) = 1 for ¢t > 30;, suppdys C
[261,381] and e < 72 for s € [201,t]. Multiplying (2.32) by e, we
have

ZHG " DED) o (t, 2) 172

t
<O{ [ 1e D el ) s 0

261
361

+ Z/ ||€ VSDk >fy+uo+mfkflv(t7x)’t:S“%Q(Rg) dS}
for ¢ € [3d1,66;], where C" > 0. This gives the following

21



Lemma 2.6. There is C > 0 satisfying

601
Z / e DEDYE ™ ¥ (t, 2) |22 g

651
<O{ [ 1D et ) s

261
301

+Z / e DD (0, 2)] B

Let Cjp (1 < j < Ny, 1 < k < 4) be open conic sets in R" \ {0}
satisfying ij & Cj71 & ijz & Cj73 & Cj74 & Cj. Choose \I/j(g), (,Oj(f) € S?,O
(1<j <Ny so that

0 if¢gCipor|f<1/2,

. o 0 ingCj,(] or ’£|§1/4,
#i(6) = {1 it €¢Cyand €] > 1/2.

V() = {1 e Gaand el 21

Put ¥; () = (1 — ©3,/4(£))V;(§) for v > 1. Then we have

(2.33) P(t,x, Dy, Dy; R, €)WV, (Dy)v(t, x)
= \Ijjﬁ(Dm)gRﬁ(t7$) + [PRJ:" \Ijjﬁ]v(tax) ( 1< j < NO)'
It is obvious that [p(t, Dy, D,), ¥;(D,)] =0, supp 0 ([Pre, V;,])(t, 2, 7,§) C

[—2071,26; ] xR" xR xR"™, and there are C;(t,z,7,&; R, €,7) € S{’fo_l uniformly
inyand e (1<j < Np) satistying

0([Pre, V)t z,7,6) — Ci(t, 2, 7,6 R, €,7)
€Sy L% yniformly in 4 and e,
supp C;(t,z,7,& R, €,7)
C{(t,z,7,&) € [-261,201] x R" x R x C;2;
[z| < R+3, |¢] 2 9v/8 and “C ¢ Cj1 or [¢] < 3v/27}.
We put
Aj(§) = @i(§log(1+(§)) (1< < No)

For B > 1 we define

PBAj (t’ x777€; R7 5) = e_BAj(E) o P(t, ZE,T,f; R, €)BBAj(€).
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From (2.14) and (2.33) we have
(2.34) (Pin)sa, (Pia)pa, - (Piays1)may (€PN P05 (D))
= gj:Rvsv’Y»B(t7 x)
for ¢ € [0,301], where (Pjx)Ba, = (Pjx)Ba,(t, 2, Dy, Dy; R, €) and
(2.35)  Gjrern(t,x) = BN, gr. — e PYR;(t, 2, Dy, Dy; R, )05 00
+ e PN [Pre, U5 v,
In §2.2 we shall derive microlocal energy estimates for the (Pjx)pa,(t,z,

Dy, D.; R, ¢).

2.2. Microlocal energy estimates

Define {U‘?’R’g}lgkgrj—i—l for 1 S] S N() by

(236) g = e PP (D)o,
ri+1— rit+2-
(2.37) vij’e B = (Pj,rﬁz—u)BAjUij,s '

ri+1
= (Pj,rfr?*u)BAj T (Pj»TjJrl)BAjUj,jR,s (1<p< T+ 1).

Then (2.34) gives
(2.38) V) pe = GiRrenp(t,z) forte[0,36].

We shall first derive microlocal energy estimates for (Pj, 41)pa,(t, z, Dy,
Dy R,e) (1 <5 < No). If m —2r; =0 then (Pj, 41)pa,(t,2,7,§ R,e) = 1.
So we may assume that m — 2r; > 0. Fix j € N so that 1 < j < N,.
In this subsection we omit the subscript j of Pjx(-), bjx(-), Aj(+), V,,(-),
Cju, 7j, --- and so on, d.e., we write Pjx(-), bjx(:), Aj(+), V;,(), Cjpus
ri, <o+ as Pu(v), bk(-), A(-), ¥,(-), Cy, 7, ---, respectively. Then there is
Gri1(t,z,7,&; R e, B) € S{?O’Q’”’l uniformly in e such that

(239) (PT'+1)BA(t7 z,T, é? R7 8) = ﬁ?’+1 (ta T, g) + 6T+1(t7 x,T, 57 R7 g, B)

Let (&) € S7, satisfy

1 ifgecsand g > 1/2,
o= {o i€ ¢ C,or [€] < 1/,

and put
Py (&) = (1 = 05,2(8))(E)-
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We define

m—2r

SrJrl t w 77 Z ”6 ’Yt »yprJrl ,u(t Dt7 x)w7<D:p)wH%2(Rg)

for w(t,z) € C*°(R; H*(R})) with w|t<o =0, ¢t € [0,301], v > 1 and [ € R,
where the p,11,(t,7,§) are as in(2.17) with the subscript j omitted. Write

(fs 9)r2mn) <E (f, 9)L2(Rg)> = f(@)g(x) dz
A simple calculation yields

(240) Dtngrl (tu wa P)/a l)
m—2r

= > {2 m((Dr = Asault, D))prs ity
=1

672%<Dm>f2ylpr+1,uwvw)L2(R2)

+ 200l Da) pras b g, |
for t € [0,30,]. Note that, for example,

(T - >‘7“+1,,u(t7 5)) © pr—i—l,,u(t? T, 5)¢“{<§)
= (7 = A1t ) (1 = ©(4[]))) © Praau(t, 7, 6)1b (),
Mt ) (1 — ©(4f¢))) € S

We can write

pT+1(t7 T, 5) - iatpr—l—l,,u(t? T, g)
= (PTJrl)BA(ta x,T, 57 R> 5) - QTJrl,u(t? x,T, 57 Ra g; B)7
QT+1,M(t7 x,T, 57 Rv N B) = (QT-H)BA(ta x,T, 57 R7 5) - iatpr+l,u(t7 T, 5)

for (t,€) € [0,361] x C with |¢] > 1/4 and 1 < p < m — 27, where
Grr1u(t, 2, 7,6 Rye, B) € ST ? " ((uniformly in €). Then we have

(T - )‘7“+1,H<t7 5)) © p?"—‘rl,,u,(t7 T, g)
= (Pr—i-l)BA(ta x,T, 57 R7 5) - QT—i-l,u(t? z,T, 57 R7 &; B)

for (t,€) € [0,36,] x C with |¢] > 1/4 and 1 < u < m — 2r. This, together
with (2.40), yields

(241) O &i(t;w,v,1)
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m—2r

S Z {771 ”ei’Yt<D$>fy(P7"+1)BA(t7 xa Dt7 DI? R: 5)7%(171)10”%2(;{3)

pn=1
= e (De) P w oy e mey
+ ”}/71 ”ei’yt<Dm>QQT+l,u(ta xZ, Dt7 Dz; Ra £, B)%wHiz(Rf)}
for t € [0,301]. Since p,41(t,7,&) is strictly hyperbolic in 7 for (¢,&) €

[0,301] x C, it follows from Lagrange’s interpolation theorem that there is
C(B) > 0 such that

m—2r

(2.42) Z le™ (D) @r+1,u(t, %, Dy, Da; R, €, BYw|| 2o gy

m—2r

Z le™(D 'ypH—l Aﬂ/"ywHL? (R2)

for € [0,36;]. By (2.41) and (2.42) there is v,41(B) > 1 satisfying
Oria (t;w, 7, 1)
< (m = 2r)y M le (D), (Prs1)balt, , Dty Dai R, €)tywl[7 gy

for i € R, t € [0,36;] and w(t,z) € C*(R; H*(RY)) with w|;<o = 0, if
v > Yr21(B). So we have

Erna(tiw, v, 1) < (m—2r)y / €77 (D)7 (Pry1) BAYA W] = s||L2 (Rn) s

for i € R, t €[0,301] and w(t,z) € C*°(R; H*(RY)) with w|i<o = 0, if v >
Yr+1(B). By Lagrange’s interpolation theorem 7" (£) 4, (€) (v 41 =m—2r—
1) can be represented by linear combinations of {p,41,,(t, 7, )V (&) hi<p<m—2r
with symbols of (£,£) in S} (R x T*R") for t € [0,36,]. Therefore, there is
C,C" > 0 satisfying

m—2r—1

(2.43) Z le™ " Dy (D)L =2t ]| Fa gy < C'Eppa (t,7,1)

~

<oy / 1D, (Prn) sty tolal 2y

for i € R, t € [0,36;] and w(t,z) € C*(R; H*(RY})) with w|;<o = 0, if
7> 7 i(B). Noting that ()T, (€) = T, (€), we have

(Prs1) A (005 D) = v + (1= 03) (Prgr) pa(e” "M 04).
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Since supp ¥, (&) Nsupp(l — ¢ (§)) = 0, there is R, (¢, x,7,&; R, e, B,7y) €
S ypiformly in 4 and e satisfying

(244) (PT+1)BA(¢’YURE ) = w’yvg,e + RT-H (t> xz, Dt? Dac; Ra £, B, ’YWW-

(2.43) with w = v} and (2.44) yield

,€

m—2r—1

(2.45) Z le™ D (D)5 v oy

<0y / le™ D) gy (5, 2) 2o,
m—2r—1

L Cn(B Z / ™ DED N4 vl d

for B>1,1€R,t€0,30] and v > 7,51(B), where C > 0, C; y(B) > 0
and N € N. From (2.39) and (2.44) we have
(2.46) Dy vt = — (a1 (t, Dy, Dy) — Dy 2wt

- q~7“+1 (ta Z, Dt7 D:m R7 g, B>w’yvg+51

+ Rr—i-l(ta [E, Dt7 Dxa Ra 57 B)’QD,Y’U + wWU;{,E'

We can prove that there are d, ,,(t,2,7,& R, e, B) € 8%727«71,17m+2r+1

v—m+2rl—v
81,0

uniformly in e, dr+1,u7l(t,$,T,f,R,€, B) € uniformly in ¢ and

Ryi1,.(t,x,7,& R, e, B, ) € ngl’_oo uniformly in v and e satisfying
(247) DV< >l V¢WU;%+51 7"+1 I/l(t €, Dt? DI? R € B)w7v%+sl

+ d7‘+1 ]/l(t7 x, Dt7 Da:7 Ra £, B)¢’Y”R,g

+ R7’+1,V,l(t7 x, Dtu DI) R7 g, B> ”V)wwv
for v > m —2r and [ € R, by induction on v. Indeed, from (2.46) we can see
that (2.47) is valid for v = m — 2r. Let k € N with v > m — 2r, and suppose
that (2.47) is valid for v = k. Then we have
(248)  DFFHDL)y " vl =d) g Dn v + (Do d) gy o] vR

+ Did} 1 i1V e + DiReit i1y,
where dp |,y = d)yy ., 1(t,x, Dy, Dy R,e, B), -+ and so on. Note that
d: (t,z,7,& R, e, B) = 1. Tt follws from (2.47) with v = [ = m—2r

r+1,m—2r,m—2r

and (2. 48) that
Df—H(D >l K— 1¢7UT+1
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_ 70 0 r+1
- dr+1,n,l71,mf2r71(d7“+1 m—2r,m— QTw’YU =+ w'vas + RTJrl m—2r,m— QTw’V )

m—2r—2

r+1 /H—l r41
[‘DtJerrlnl 1 w’)’vRs + E : errl/@l 1/,1, YUR,e

1
+ Didy iy 4y 1y VR + DthJrl,ml—lqﬂWv

where d),, ., (t,x,7,§;Re,B) = Y 027" 1d2+1m Lt w, & Re, B)TH
= d) 1 11,2, Dy; Roe, B). This implies that (2.47) is

valid for v =  + 1. It follows from (2.36) and (2.47) that

ZH DD l e™ BA\IJWUH%Q(RQ)
m—2r—1
<GB Y e DD e PN g
n=0

+Z||e—vtDn l m+2r— Hap Rs||L2 Rn)}

S

+ Ci.n(B) H 'Dy(D, >l V- ”QMU“LQ (Rn)’
I

Il
o

where B > 1, [N € N and Cj(B) and C;y(B) are positive constants.
Therefore, this, together with (2.45) gives the following

Lemma 2.7. There are positive constants Cy(B) and C;n(B) (I € R,
B >1, N € N) such that

t
S [ e DHD e PN
T t l
—s —m+2r4+1— r
< Ol(B)Z/O le™ 7 DY (D)™ 2 0 il T2 (ray ds

m—1 t
+Cin(B) ) / e DD a0l Gy s
p=0 "0

forB>1,1€ R, Ne N, te€|0,30] and v > v,+1(B).

Remark. The lemma is well-known since Pril(t, x,7,& R, €) is strictly hy-
perbolic in 7 for (¢,z,£) € [0,30;] x R™ x (C \ {0}). To make the paper
readable we gave the proof of the lemma.
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Next we fix £k € N so that 1 < k < r. Recall that

Pk(ta LU,T,f; R? 8) = (T - bk(t7§>>2 - ak(t7£) + Qk(tv'ru 7-75; R7 8)7
Qk(ta 33',7_,6; R> 5) = Qi,o(tax7£; R7 6)7— + Qi,l(taxvg; Ra 5) + q;?(t,a?, T, 57 Ra 5)

for (t,z,7,€) € [~301/2,40,] x R* x R x C with |£] > 1/4, where G (1, 7,6 R,
e) € S{'o(R x T*R") uniformly in € ( u=0,1) and ¢)(t,z,7,&; R, ) € 8117’51
uniformly in e. Therefore, there is ¢ (¢, z,7,&; R, e, B) € 811,0 uniformly in e
such that

(2.49) (P)pa(t,z,7,&; R e) = pr(t, 7,8) + qr(t, z,7,&; R, &, B).
Note that
(2'50) ﬁk@? T, 5) = (T - bk(t7 é))2 - ak(tv 5)7

(251) Qk(tvxaTag; R7€7B)
= ot 2, & R )T + iy (1,2, & R e) + @t 2,7,6 R, €, B)

for (t,z,7,€) € [~36,/2,40;]x R*x R xC with |¢| > 1/4, where ¢)(t, x, T, &; R,
e,B)/log(l + (&)) € 811”0_1 uniformly in . As ax(t,§) is real analytic in
[—36,/2,401] x (C\ {0}) and ay(t,€) > 0, we can apply Lemma 2.2 ( and its
remark). Put

361 .
gk(g):/o ar(t.€)dt for € € C.

Then there are my € N and C' > 0 such that for any ¢ € C\ {0} there are
mi(§) € Zy and ag,(§) € R (1 < p < my(§)) satisfying my(§) < mp and

(2.52) CTHRLEI™ O + apa (™ O7 - o+ apm, (€]
< ax(t,€) < CRi(9),
(253)  [dax(t, )| < CR(8)

for ¢ € [0,301], with a modification of d; if necessary. Let T(€) be a symbol
in SY, satisfying 0 < W(£) < 1 and

~ o J1 if§eCyand [{] >1/2,
v {0 if £ ¢ Cor ¢ <1/4,

and define

(€] = VER(EE(E) +1 for £ € R™
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Lemma 2.8. For s € R and o € (Z,)" there is Cs, satisfying
(2.54) 0" [€1;] < Cua €T

Proof. Tt is obvious that [£]; € Sto, [€]7 > 1(>0)and [0°[€]3] <
Clo(€)?70l Fix p € N with 1 < p < n, and put f(€) = [[£]; and e, =
(0p1,-+ ,0un) € R™, where 6,; = 01if p # [ and 0, = 1. Then for any
h € R there is 0 € (0, 1) satisfying

h2
(€ +hen) = f(€) + hde, f(€) + 506, f (€ + Ohey) > 1 (> 0).
If +h > 0, we have
F0:, f(€) < f(&)/1h] + 1|02, f(§ £ 0lhle,)/2.

Therefore, taking |h| = \/2f(£)/Cs (= +/2/C2[[£€]],) we have

106, (T3] < V2 [[€]),-

If |a] = 1, then we have

0 €151 = [0°(LETR)I < IslV/Ca/2

Since [¢ i < Co(¢)? and |07 [ ]| < Clay(6)> ! < cla.cé‘“‘”*l L€l if
|a| > 2, there are C!, > 0 (o € (Z4)") satistying

ez < CLIENT™ (a ez,
Noting that
0°0, (1] = (s/2)0{([€]]7)* e, [ €]} )

induction on || proves the lemma. O

We may assume that mg > 2. Define

po = 2/(mg + 2),

wi(t, €) = ax(t, U (E) + [,
Wio(t, €) = TET wi(t,6) 72 + 1,
Wi (2, €)

(Zw 260 0,0, I + [T (. 1,
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Wiz (t,€) = (W) 0pan(t, €)1 + [E]7) /2 fwn(t, ),
Wi22(t, )

= (V)"0 Vear(t, ) + [E]7) 2 (W ()| Vear(t, E)1° + [E]7) 2,
Wio(t, &) = Wia1(t, &) + Wioo(t, &) +1

for (¢,€) € [0,36;] x R™, where the g*(t,7,€) are as in (2.22) and V¢f(§) =
(Oer f(£), -+, Og, F(£)). We also define the Riemannian metric gx , on R*" by

)
gk,p(x,£)<y7n) = ’y‘z + [[S]Lc ! ’77‘27
where 0 < p < po.

Lemma 2.9. Let 0 < p < po. (i) g, is slowly varying and [£]),, is gk,
continuous, i.e., there are positive constants ¢ and C' such that

Giop (640 (X) < CGip (a.6)(X),
CHeN <[E+nl, <ClED,

Zf (ZL’,S), (y)n)u X e R2n and gk,p(x,ﬁ)(y)n) S C. (11)

9w () (=500 (). 0P /1,09 (X)) = [ET wl? + [P

where o denotes the symplectic form on R**. Moreover,

ol€) (= {500 910 (X))} ) = €17 < 1.

(iii) gk, is o temperate and [£]), is o, gk, temperate.

Proof. By Lemma 2.8 we have, with C' > 0,

@55 |[&+nle= el =|n- [ Vele+onl, as] < Cll

Let ¢ > 0, and assume that gy, (¢ (y,7) < c. Then we have || < /e [£])}
(< Vel€]l,)- So, choosing ¢ < ¢g = (4C?)~1, we have

(2.56) (€1, /2 < [&+nlle <301, /2

Since 227 < 2 and (2/3)% > 2/3, we have

20k, (2,6) (X)/3 < Gk (z+y,£+m) (X) <20, (z,8) (X).
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This proves the assertion (i). The assertion (ii) is obvious. (2.55) gives

[€+n], < (€ +Clnl < C [N+ 97 p ey (s )2,
which implies that

[0 < CIE+nT (T4 97 e (v )2,
Gk.p (m,f)( ) < " Gk,p (z+y,6+1) (X)(1+ gk,p(az,g) (y,m),
where C’,C" > 0. This proves the assertion (iii). O

Lemma 2.10. There are positive constants C, C, and Cs, (s € R,
a € (Z,)™) such that

(2.57) By (£, E)W(E)] < Wia(t, E)wi(t, ),
(258)  |0fw(t,€)°] < Crawn(t, O[] (s €R),
(2.59) |0 Wio(t, )| < CaWio(t, §) [[€]]
(2.60) O Wia(t,€)] < CaWiea(t, €) [1€ 11k
(2.61) |06, Wi2(t, )] < CWiea(t, §) [€]," ( 1<p<n)
for a € (ZL)"™ and (t,€) € [0,36;] x R™.

Proof. (2.57) is obvious. Let f(§) € S7, satisfy f(£) > 0, and put

\04|P0

\0400

9(€) =\ F(&) + [
Then we have, with C,, >0 ( « € (Z,)"),

(2.62) 1099(€)] < Cag() [ €] .

Indeed, we can apply the same argument as in the proof of Lemma 2.8. In
doing so, we use the fact that V¢ f(§) = 0 if f(§) = 0. Then we have, with
C >0,

(2.63) |0, ()| < CV/f(§) for 1 <p<n.
Since 2pg — 1 < 0, we have

196,9(6)| = 105, f(€) + 0, [E1 1/(29(€)) < C" < C'g(&) (€11

where 1 < p < n and C" > 0. This implies that (2.62) is valid for |a| = 1.
Let [ € N, and suppose that (2.62) is valid for || <. Let |a| = [+ 1. Then,
noting that

29(E)0°9(€) + 3 (g)aﬂg@aa—ﬂg(s)=aaf<s>+aa Le.

0<fB<a
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we have, with C! > 0,

(264) 29(6)|0°9(e)| < O (@7 + [+ 3 a(e (€] ).

0<B<a

g€ [ €], (2.64) shows that (2.62) is valid for || = [ + 1. (2.62), with
induction on |«/|, gives

Since (£)271°1 < €1 €] 771, 2p — |a] < (2 — |al)po and [€]J " <

(2.65)  [0°9(&)"] < Caag(©)* €] for a € (Z,)" and s € R,

where the C;, are positive constants. (2.58) and (2.60) are simple conse-
quences of (2.65) and (2.62), respectively. (2.59) easily follows from Lemma
2.8 and (2.58). Taking “f(€) = U(£)*0,Veay(t,£)|? and s = 17 and “f(£) =
@(§)4|V§ak(t, &)|* and s = —17 in (2.65), respectively, we have

(2.66) |0°Wia2(t,€)] < CaWiaa(t, &) [€]], "

for any a € (Z4)" and (t,€) € [0,308;] x R™, since W(£)*|8,Veay(t, €)[2, W (£)*
X [Vear(t,€)[> € S34([0,361] x T*R™). A simple calculation yields
(2.67) |0, Wi2a(t,€)|
< (1) Dran(t,€) - Be, (W(E)*Dran(t, )| + CLEN ) fwn(t,€)
X (W) |Ohan(t. ) + [ET*) 2 + Wieaa (8, [ €]
< 106, W()” - Dran(t, )] fe0n (1, €)
+ (W) Vear(t, )* + [E]7°) Wi aa(t, €) Jw(t,€)
+ O &N ™ +Waan (6 1,7,

where 1 < p < n, (t,§) € [0,36] x R" and C' > 0. (2.63) with f(§) =
U(&)ag(t, &) gives

Ve(U(€)ax(t, €))] < C\/ W(€)ar(t,€) < Cun(t,€) €]

Since |Vl (€)] < C(€)~1, W(&)ar(t,€) < CLEW/ W(E)ax(t, ) and wy(t, €)Y
> [€]%°, we have, with C" > 0,

(2.68)  [U(€)*Vear(t, )] < [Ve(W(€)an(t, )] + U (E)ar(t, ) VU ()]

< O'(wi(t O (€1 +y/ ¥ (©an(t. &) ) < 20 un (O [€],"
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Next we shall consider \If( )Oar(t, €). Put g(t) = W(E)ax(t, &) for (t,€) €
[0,38;] x R™. Recall that U(&)ay(t, €) is defined for (¢,€) € [—26y,40,] x R™.
Then, for h € [0y, 61] there is 6 € (0, 1) such that

0 < q(t+h)=q(t)+hgd(t)+ h*¢"(t +0h)/2
for t € [0,38]. Therefore, we have
+¢/(t) < q()/|h] + |hlg" (¢ + Oh) /2.
This gives, with Cy > 0,
(2.69) |W(&)Dhar(t, )] < W(€)ar(t, €)/|h] + Colh[T(€)(€)?

for (¢,¢) € [0, 351] and h € [—61,61]. When +/ay(t,€)(€)~2/Cy < 61, taking
|h| = \Jax(t,£){€)=2/Cy we have

(2.70) W (&)har(t, §)| < 21/ Coax(t, ) (£)(E)

for (t,£) € [0,36;]. Note that (2.70) is still valid when ay(t,£) = 0. When
Var(t,€)(€)2/Cy > 61, taking |h| = §; in (2.69), we have

Cod2W(E)(€)? < W(E)ax(t,€) < CU(E)(E)%,
W(&)Dyar(t, €)] < U(E)ax(t, €) /61 + Cody W (£)(E)?
< O ar(t,€)T(€)(€) /1.

This, together with (2.70), gives
(2.71) |06, W(€)” - Auaar(t, &) /wi(t, §) < CMwy(t, €)™ /61 < C" €], /6

for 1 < p <mnand (t,¢§) € [0,30] x R", where C” > 0. Therefore, (2.61)
follows from (2.66) — (2.68) and (2.71). O

Lemma 2.11. Let p > 0, and let f(§) € CY(R™) satisfy f(£) >0 and

(2.72) 10, f (O < C(NFE) €], for 1L <p<nandfeR"
Then, for any 6 > 0 there is cs = cs(C(f)) > 0 satisfying
(2.73) L+ < f/f) <1+

if&,me R and |€ —n| < /es [E]R- In particular, f(§) is gk, continuous.
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Proof. Let 0 < ¢5 < ¢p and [£ —n| < /c5 [£]];, where ¢ is the constant
in (2.56). Then, by (2.56) and (2.72) we have

| log f(§) —log f(n)]
—’Z/ O, [(E+0(n—6))- (nu — E)F(E+0(n—€)~"db

< 20(f Z |§M ¢l." do < 2°C(f)v/nl€ —nl[€]"

< 2C(f)y/ncs,
exp|~2°C(f)v/cs] < f(n)/F(€) < expl2°C(f)v/nca).

Taking cs = min{cy, (log(1 + 4))?/(2’nC(f)?)}, we obtain (2.73). O

Lemma 2.12. (i) For any 6 > 0 there is ¢§ > 0 such that

(1+0)"" < wi(t,m)/wi(t, €) <

1+,
(1+0)" < Wip(t,n)/Wiu(t,€) <1+

(0<pu<2)

if&n e R, t €[0,36] and | —n| < /¢ [E]}°. Moreover, there is C' > 0
such that

(2.74) wi(t,€) < C L€,

(2.75) Wio(t, ) < 2[[ €],

(2.76) Wia(t,6) < C[EN™,
(2.77) Wia(t,§) < CENR,
(2.78) W(€)*|Vear(t, &) < C[£],

for (t,€) € [0,301] x R™. (ii) Wy1(t,&) is uniformly o, gi,, temperate in
t €0,38,]. (iii) Modifying 61 and mg if necessary, for 1 = 0,1 we have

#{t € [0,301]; 80, ar(t,&) = 0} <my
ifl1<pu<n,£€CnS™ ' and &ﬁéuak(t,f) % 0in t.

Proof. The first part of the assertion (i) easily follows from Lemmas 2.10
and 2.11. (2.52) proves (2.74). (2.75) is obvious. Let us prove (2.76). From
the definitions of the g#(t, 7,£) we have

(279) mln{ gér/lm |t - 5’27 1}|5N(t’ bk(ta 5)7 £)|2 < Chmfl(ta bk(ta 5)7 f)
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for (¢,€) € [0,35;] x (C\ {0}). By (1.1) there is C' > 0 satisfying
(2.80) Clap(t, OIEP™ ™ < Py (8, be(t,€), ) < Cag(t, ©)[€™
for (t,€) €10,38:] x (C\ {0}). Therefore, we have

81 win{_min |6 — s, LAt bu(t,€). OF 1€ < CRule).

Now we use the notations in the proof of Lemma 2.2 with k() replaced by

#r(€) (see, also, the remark of Lemma 2.2). Let £ € CNS™ ! and p € U(£Y).
Then we have

7(p)
Filp(@) = e(X (@) [ [ Xu(@)*@  (aeTEp)),

where e¢(X) > 0 for X € V(€% p). So we have, with C” > 0,

min{ _omin [t = sl T be(t, G(X), G(X) [P < O (P(X
{pomin 18 = s 1B (2 be(t, 6(X), SO < C"Ri($(X))

for t € [0,36,] and X € V(&9 p). This implies that

B (1, bi(t, 2(X), §(X))* = B(¢, X)Rn(p(X)),
where (#(t, X) is real analytic in (¢, X). Therefore, we have
(2.82) |84 (t, bi (8, €), )| < C €], €™

for (¢,€) € [0,35;] x C with |¢| > 1, which proves (2.76). (2.63) gives

[P(€)*Vear(t €)] < [Ve(T(E)ar(t, )] + [F(E)an(t, ) VeT ()
< OV U(©ar(t, ),
which proves (2.78). It follows from Lemma 2.2 and (2.78) that

~ 301 1/2
B vt o)l <O [ T Vet O i) < C ¢l

for (t,&) € [0,36;] x C. This, together with (2.53), proves (2.77). The
assertion (i) implies that Wy (¢,§) is uniformly gy ,, continuous in ¢. If
¢,n€R™and € —n| < /| [£]L, then we have

Wk,l(t7 g) < Wk71(t7 77)(1 + gg,p (z,8) (y — &, = 5))
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for t € [0,301], z,y € R™ and p > 0, where ¢} is the constant in Lemma 2.12
with 6 = 1. Suppose that &, € R", |¢ —n| > /A [€]5 and p > 0. We

may assume that ¢; < 1. Then we have

L+ grp ey — 2, — &) > (L + [E]7).

This, together with (2.76), gives

Wit (t,€) < CIEN™ < CWia(t,0) (L + 97wy (y — ,m — €)) 177000,

which proves the assertion (ii). The assertion (iii) easily follows from Lemma
2.2, since Oax(t,§) and 0,0¢, ax(t,§) are real analytic. O

Let 0(¢) € C3°(R") satisfy (&) > 0, [z, 0(§)dE = 1 and suppf C {€ €
R"; [¢] < /¢ }. We define

Wialt, ) = [ 00T (€~ n)Waalton) 11" d

n

for (t,£) € [0,36;] x R™. Then we can prove the following lemma, applying
the same argument as in Lemma 3.4 of [12].

Lemma 2.13. Modifying ¢, if necessary, we have, with C, > 0 (« €
(Z+)n>7

Wk,2<t7 g)/4 S Wk,?(ta g) S 4Wk72(ta g);
|02 Wiea(t,€)] < CaWiea(t,€) [€],

for (t,€) € [0,30;] x R™ and o € (Zy)"™.
Define

Bu(t,€) = /0 (Wiao(,€) + Wiea (s, ) + Whals, ) ds

for (¢,€) € [0,301] x R™.

Lemma 2.14. There are C,, > 0 ( o € (Z4)™) such that

08Py (t, &) < Coll +log [€],) €] el

for (t,€) €[0,36;] x R" and o € (Z)"™.
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Proof. By Lemmas 2.10 and 2.13 it suffices to prove that
(2.83) (0 <)®x(301, &) < Co(1 +log[[€]l;) for £ € R™

If 7r(€)W(E) = 0, then we have [£], = 1, wp(t,&) = 1, Wio(t,€) = 2
Wkl( t,§) = 2 and Wyo(t,§) = 2 by (2.63) and (2.81). So (2.83) holds if

Fp(E)W(E) = 0. Now assume that & € R™ and 7, (€)¥(€) > 0. It follows from
(2 52) that there is ¢q > 0 satisfying

wi(t,€) > co[1€] H =] + [€17"),

where 7+ 4 a1 (€)™ O~ -+ 4 ag 1y 6 (€) = I (t = £,(€)). So there
is C' > 0 such that

/Ogglwk<t=f>”2dtsc / el (1T -+ Leg ) ™ a

pn=1
Write

({0,301} U{Ret,(&) hrcpcmi(e)) N 10,301] = {to, t1, -+ sty )41}
t1=0=1g <t1 <ty < <tpe)t1 =301 = Ly (¢)42

Then we have, with C’,C"” > 0,

301
/ wy(t, &) 7Y2 dt

(tuttus1)/ 1/2
/ (H It —t,(6)| + [E] 2) dt
(

= Jtuttu)/2

< Z / ERA (1 — ] 4+ [ moy=mor2 gy

{Omgg% if mo > 2,

< 2
CIEN (A +log[[€],) if mo =2,

since my(§) < mgy and 2(pg — 1)/mo - (2 —mop)/2 — 1 = —2pg. This gives,

with C' > 0,

301

(2.84) ; Wio(t, ) dt < C(1 +log[[£]],)-
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We note that (2.84) was proved in [2] when ag(t, £) is a non-negative quadratic
form of £. By (2.76), (2.79) and (2.80), we have, with C' > 0,

301

Wiea(t,€) dt < 0/0361 min{( min )|t—s|>_1,[[g]],§—ﬂ°}dt.

0 seR(E/I¢

Write

({0,361} U{ReA; A e R(&/[E])}) N[0,361] = {70, 71, . 7o)}
O=To <M <Tp<--- < TN(g) :351:TN(5)+1.

Note that N(§) < N5, + 1, where Nsg, is the integer in (1.2). Put 7y = 0
and 7,41 = (7, + 7u41)/2, T, = max{7, — [[f]]zofl,ﬁb} and le = min{7, +

(€] Fupa} (0 < p < N(€)), we have, with C, C" > 0,

36, N(€) W
Wkltgdt<cz / dt+/ (] dt
+ /;ﬂ(t — )t} < C'(1+ log [[€])).

Let Ny € Z, and p € R, and let f(t,£) be a function defined for (¢,&) €
[0,36;] x C satisfying the following:

(i) f(¢,€) is continuously differentiable in ¢ € [0, 3d;].
(i) #{t € [0,30,]; Df(t,6) = 0} < Ny if € € C and 9, f(¢,€) £ 0 in 1.

(i) |£(t.€)] < Co [€]7 for (£.€) € [0,38,] x C with |¢] > 1.
Then there is C'(Ny, Co, p) > 0 such that
301
(2.85) / B )/ €)] + 1) dt < C(No, Co,p)(1 + log [[€]})

for £ € C with |£| > 1. Indeed, (2.85) is obvious if 9, f(¢,€) = 0 in ¢, where
£ e€C. Fix £ €Csothat || > 1 and 0,f(t,£) #Z 0 in ¢t. Write

{t €[0,36]; f(t §)0if(t,€) =0} = {t1,ta, -+ ,tn(e)}

0<t <ty <--- <ty <301
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It is obvious that N(¢) < 2Ny + 1. In each subinterval [t,_1,t,] <

(1
1 < N(E) + 1) we have “F(L€) > 0 or f(1€) < 0" and “Df(t.&) > 0 or
O f(t,€) <07, where ty = 0 and ty(e)4+1 = 30:. Then we have

/tu 100f (8 O/ (LF (&, &)+ 1) di = [log{(|.f (£, )] + 1)/(|f (tp-1, )| + D}

2log(Co + 1) +2plog [[¢]], if p>0,

< 2log(Cy Hf“ +1) < {QIOg(Co +1) it p <0,

which proves (2.85). Note that
Wia(t, 5) < (W(E)*[ran(t, )] + [E]7)/ (P (E)an(t. &) + [E])
+ 22 &) 1000, an(t, )| + [ER)/ (V€)% D, (1, )| + [ET)

<2|3t( (©an(t, &) + [T/ (T(E)ar(t, &) + [ €7 +1) + [£];”

+4Z|0t &) D, an(t,€) + [E ]/ (U (€)1, ar(t, €)] + [ +1) + 2n.

This, together with (2.85), gives, with C' > 0,

361

f Wia(t,§) dt < C(1+log[[€]],),

which proves the lemma. Il

Let A>0,v>1and ! € R. We define

Ki(t,6 A, 7,1) = e T Ky(t, & A, 7, 1),

Fix p so that 0 < p < pg.
Lemma 2.15. There are C,(A,1) >0 ( o € (Z4)™) such that

(2.86) 08 Ki(t, & A7, 1) < Cal A DER(t, & Ay, 1) [ €]

Jor a € (Z,)" and (t,€) € [0,30,] x R™. Moreover, Ky(t,& A,~,1) is uni-
formly o, gi, temperate in ¢ and t € [0, 36;].
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Proof. Since
Oe, [ (t, & Ay, 1) = (—ADg, Du(t,€) + (20 — 20)€,()T ) Ku(t, & A, 7, 1),

Lemma 2.14 and induction on |a| prove (2.86). From Lemma 2.11 I}k(t, & A,
7, 1) is uniformly g , continuous, i.e., there is c(A, 1) > 0 satisfying

if t € [0,301], &,mn € R™ and |[§ — n| < ¢(A,1) [£]];. Suppose that £,n7 € R
and |£ —n| > ¢(A, 1) [[€])7. Noting that

(€)% exp[=ACo(1 +log [€])] < Ki(t,& A7, 1) < (€)%,
(F < VML + I — €)Y < V2MZHL + G (09 (0,m — )2,

we have

(2.87)  Kin(t,& Ay, 1) < 2022 ()2 [ ]1D K(t,m; A7, 1),

From (2.55) we have [n], < Co(A,1)|€ — n|'/?, where Cy(A,l) > 0. This,
together with (2.87), gives

fék(t 57 A7 Y, l) S Cl (Aa l)f(ik (ta Uk Aa Y, l)(l + Gk,p (z,8) (07 n— 5))|l—t|+ACo/(2p)’

where C1(A,1) > 0. O
Define

gk’(t; w, A’ s l) :((Dt - bk(tv Dﬂ?))w’y(DI)w> Kk(Dt - bk)¢7w)L2(Rg)
+ ((wk(ta Dz) + (10g<Dx>”/)2)1/}7w7 quvz)'yw)LQ(Rg)a

for w(t,z) € C*(R; H*(RY})) with w|;<p = 0 and ¢ € [0, 34|, and

1
Wit &) = Wi(t,€) + Wia(t,€)  for (£,€) € 10,30] x R”,

pn=0
where Ky = Ki(t,D,; A,~v,1). Then we have
Dtgk(tv w, Aa Y5 l)
= 20 Im(Op((7 — bi(t,€))*)1byw, Ki(Dy — by )tyw) 2 (e

+ 21 Re(Op(atbk(t, f))”[byw, Kk(Dt — bk)www)LQ(Rg)
+ 1((Dy — b )y w, (AW (L, Dy) + 2(y + log(Dy )+ ) Ky (Dy — bi)sw) 2Ry
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— 2i Tm((wy, + (10g(Dy))?)¥oyw, Ki(Dy — bi)thyw) 2 (man)
— i(Op(Grax(t, §)) Y w, Kpbyw) 2wy
+ i((wg + (10g(Da))*)yw, (AWy + 2(7 + 10g(Dy)5)) Kby w) 12 (my) -

From (2.49) — (2.51) we have
(7 = b(t,€))* — ak(t, €) +i0,bi(t, €)1 (§)
= ((Plc)BA<t7 T,T, 5; R> 8) — sub U(Pk)(t> xz,T, g; Ra €)
- (jlg(ta €, T, g; R, g, B))¢W(§)

A simple calculation yields

D& (t;w, A, 7, 1) = 2i Im((Py) patyw, Ki(Dy — bk)¢7w)L2(Rg)
— 2iIm(sub o (P ) w, Ki(D; — bp),w) r2wrp)
— 2 Im((GQ(t, , Dy, Dy Ry, B) + [ D, [l +(log(Dy)4 ) oyw,
Ki(Dy — by)yw) 2w
+i((Dy — b))y w, (AW, + 2(y + 1og(Dy)4)) Kk (Dy — bi )y w) 2wy
—i(Op(Grax(t, §))Yyw, Kyyw) r2(mn)
+i((wg + (log(Da))*)tyw, (AW + 2(y 4 10g(Dz))) Kithyw) 2 my)

where sub o(Py) = Op(sub o(Py)(t,z,7,&; R, €)). Therefore, we have

(288) OiEu(tiw, A7, 1) < | Ky (Po) parbywll3my)
+ 1 Wt sub o (P wl e ry)
+ |yK1/2~0(t 2, Dy, D R, e, BYto w32 g,
+ KPP DL 1R w3 gy
+ (|1 (log (D)) 2w 2
— ((Ds = b)tbyw, (A = D)Wy, + 2y + log(Dy), — W1 — 2)
X Kk(Dt - bk)% )L2 (R1)
+ [ K2 w2 Op(Duar) byl g /2
(A= 1/2) Wi + 2y + 2log(Dy)s) (1 + (log( Dy} )2y,
Kk¢v )L2(R¥)'

Lemma 2.16. Let k € R, and let q(t,7,&§; R,¢) € ST4([0,36,] x T*R")
uniformly in €. Then we have

(KW ) o gty @, 6 Rye) o (K, P12
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= Q<t7 z, éu R? 8) + Q1<t7 z, 57 R7 A7 v, l7 8)7
q(t,z, &R, A, L) [€]]) € S5o([0,301] x T*R™)  uniformly in v and e.

Moreover, we have

K;/z oq(t,x,& R,e) o K,;l/z € S50([0,30:] x T"R")
uniformly in v and €.
Proof. Since K;/Q oq(t,z,&; R,e) o Kk_l/2 = I?;/z oq(t,z,& Re) o I?k_l/z,
Lemma 2.15 and the results given in §18.5 of [4] prove the lemma. O

By (2.13) and (2.22) we can write
(2.89) sub o(P)(t,z,7,& R, €) ZCN (t,x)p (t,1,€)

for (t,z,7,€) € [0,301] x R* x R x R", where ¢,(t,z) € C*([0,36,] x R")
(1< u<ry). Soit follows from Lemma 2.4, (2.21), (2.49), (2.51) and (2.89)
that

(2.90) sub o(Py)(t,z,7,&; R, ) = q,i,o(t, x,& R e)(T — br(t, §))
+ Z Eu(tv C(")dk(t 5)5“(25’ bk:(tv 5)’ g)/|§|m—2
pn=1

+ crolt, 7, &)ag(t, &) + cra(t, §)Oar(t, §)

for (t,x,€) € [0,36,] x R x C with [£] > 1, where di(t,€) € S74([0,36] x
T*R™). We recall that cpo(t,z,€),ce1(t,€) € Sio([0,36,] x T*R™). By
Lemma 2.16 and (2.90) we can also write
(2.91) KW, Psub o(P)y,w

= (K*W,Pabo(t, 2, Dus R, e) K, PW D K Pwr 2

X (D¢ = bi(t, Dz))pyw
+ Z (KW et o) Ky PWI R PW Py (¢, D)
x Op(B"(t, bi(t. €), €)/ 1€ ) nw
+ (K, PW Pepo(tow, D) K PWID KW Pa(t, Dy )y w

+ KW e (t, D) Op(9,ax(t, €)) b,
KPW et ) K PWEE = 6t @) + Guo(t,z, Dus Ay, ),
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where ¢,0(t,z,& A, 7, 1) [€]]} € S§,([0,381] x T*R") uniformly in ~. From
Lemma 2.16, the Calderon-Vaillancourt theorem on L? boundedness and
(2.91) we can see that there are Cy > 0 and C(A,l) > 0 satisfying

1KW1 sub o (P e g

< CAD I W (D = by

+ Z 15,2 W2 [ Do .7 Op(B8” (¢, bi(t, €), €) /€1 2) by w3y
+ Z VKW 12 (D2) 7 Op(y an(t, ) [ ay }

+C, Z 1K Wit Op(B(1, by €) /€120l |2 2 ey
pn=1
for t € [0,30,]. It is easy to see that
C(A, DKW P 1D, 1 Op(8- (¢, bi, )16 )by w] 22 e
< |52 W Op(B(t, bi, €)/1€]™ 2 0| 22 e
+ C(A, DY KW P 1D Op(B (t, bi, €)/161™ 2 0wl 3 gy

for ¢ € [0,30,], since
CADEN <1+ (A DY€7
From (2.82) we have, with C'(A,1) > 0,
C(A, D)W 1D, 10" Op(8# (¢, bie €)/1€]™ )0y w] 22 e

< [|Wo K2 Op(B (1, bie, €) /1€ )bl 2 )
+ (A D)W P K002

for t € [0,3d,]. By (2.70) with \Tf(f) replaced by ¥(&) there is C' > 0 such
that

€)5 1 0F an(t, €)1 ()] < OV ax(t, €)1,(€) < Cw(t, €)', ()
for v =0,1 and (¢,£) € [0,30;] x R™. Noting that

(Wi (t,€) " wi(t,€) 728" (8, bi(t,€), ) /€™ 0, (€) < 1
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for (t,€) € [0,301] x R™, we have

| Wi Op(BY (8, bi, €)/1€1™ )yl
< ||K1/2W1/2 (tan)l/quZ)WwH%?(Rg)
for t € [0,30,], which gives, with C'(A,[) > 0,
(2.92)  ||K, W2 sub o (P w3 gy
< ro(Co + DIIE W wy ] fa g
1/2 1/2 1/2 2
+ C(A D (|, (Dy _bk)¢7w||L2(Rg) + || 5wy, ¢7w||L2(Rg))

for t € [0,30,]. From (2.51) and Lemma 2.16 we have

Klimgl(f)(t?%aDtsz;R,E,B)
= @270(25,(%, D:L“; R> A”Y’ l,E, B) 10g<1 + <DI>)K11/2(D15 - bk)
+ leg,l(tv'xa Dl‘a R7 Aa Y, l,E, B) 10g(1 + <Dx>)K]i/2

where q (2, Dy Ry Ay, 1 e, B) € S, SR x T*R™) uniformly in v and &
( #=0,1). Therefore, there is C'(A4,1, B) > 0 such that

(293) ||K1/2~O<t xr DtaD:mR 8 B)w’}’w“LQ Rn
< C(A L BY| K (D = b)tbywlZagm
+ HK;/Z 10g<Dw>7¢7wH%2(Rg)}

for ¢ € [0,301] and v > 2, since log(1 + (£)) < log(&), +1og2 < 2log(¢)., if
v > 2. Noting that

Wi(t, &) Y2 [ €127 < Wilt, €)™Y 2wp(t, )Y Wi o(t, &) < W 2wy (t, €)V?,
we have
(294) KW P IDL P dywldamg < K2 W w0y 0w 2a gy
for ¢ € [0, 36,]. Since

‘Wk (ta 5)71/2wk (ta 5)71/28tak (t7 é)w’y (é—)‘ S Wk,Q (t7 6)1/2wk (tv 5)1/21% (6)7

we have
1/2 —1/2 —=1/2 1/2 1/2 1/2
(2.95) [ 2W, 2w, 2 Op(Bhar)bywl2e gy < 12 W 2w > w2 g
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for t € [0,301]. Therefore, it follows from (2.88) and (2.92) — (2.95) that

& (t;w, A, 7, 1) < ||K11/2(Pk)BA%w||%2(Rg)

for t € [0,301],if A > ro(Co+1)+2and v > v = (C(A,1)+C(A, 1, B))/2+1.
Let A=ry(Cy+1)+2and v > 7. Then we have

t
En(tyw, A, v, 1) S/ ||Kk(5>D$)1/2<Pk)BA¢Ww|t:sH%Q(Rg) ds
0

for t € [0,301]. Note that

e < K(1,6)'7 < e g,
1D(D2)5 rw | Loy + (D)3 00| L2 my)
< O{H(Dt - bk(tv Dw>><Dx>£/_1¢7w||%2(Rg) + ||<D$>Ey¢7w||%2(Rg)}

for t € [0,301], where v4(A,01) > 0 and C' > 0. Then we have
(2.96) Z le " Dy (D, “wvaL? (R})

<c / (D) A8D (By) gt 0l [
0

for ¢ € [0,30;]. Since (1 —¢,(£))¥,(§) = 0, there is Ry(t,z,7,&; R,e,B) €

ST o 2R yniformly in 4 and e such that

(297) (Pk)BAw'y'URg = w’Y’URe +Rk(t Xz Dt,DI,R g, B)Qﬂfy

This, together with (2.96), yields
(2.98) Z e DE(D) sl o)

< C/ || —75 >l+uk(A61 77/}7ng1|75 S||L2(R") ds
m—2k+1

+Cin(B Z / e Dy (D l V- “hyvli= s||L2 R™)

for t € [0,30,] and N € N, where C, C) y(B) > 0. From (2.97) we can write
Dty = yvi = (Pe)aa = D)yt + Ri(t, 2, Di, Do Ry €, By,
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Applying the same argument as for (2.47), we can prove that there are
Ay, (tx,7,& R, e,B) € Sty ! uniformly in e, diy(t, 2, 7,6 R, B) €
Sigzl_” uniformly in € and Ry, (t,z,7,& R,e, B,7) € STy k=700 i
formly in v and ¢ satisfying
(299) DDl =d), (6,3, Dy, Dyi g, By,

+d,”l(t x,Dy, Dy; R, e B)wvaE

+ Rk,l/,l(t7 Z, Dt7 Dﬂca R7 g, B7 7)¢7

for v > 2. Therefore, it follows from (2.98) and (2.99) that there are positive
constants Cj(B) and C; n(B) ( N € N) such that

Z le™* DY (Dy)Y” “wvvRaHB (R2)
< Ci(B) /0 H6_V8<Dm>ly+yk(A’51)¢7U§z,_sl|t:s||%2(Rg) ds

2k—2

+ 3 e DED 2 v M |
=0

3

+Civ(B) ) e DY (Do) b vl| 7 my

=
I
o

for t € [0,30;] and N € N. This, together with Lemma 2.7, yields the
following

Lemma 2.17. There are ~o(B) > 1 and positive constants vy, Cy(B) and
Cin(B) (leR,B>1, N € N) such that

Z / &= DEDLY e PN o 2y d
< CB) [ 1 D5 bl
m—1 t
OB Y [ e DD, N vl
pn=0

forB>1,1€ R, N €N, te0,301] and v > ~(B).

Remark. v} (t,z) also depends on  and B ( see (2.38)).
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2.3. Proof of Theorem 1.2

We can choose 9;(&) € S7o (1 <j < Np) so that the ;(€) are positively
homogeneous of degree 0 for |£] > 1, supp @/?j CCjo (1<j<Np) and

Zzﬁj(ﬁ)Q(l —0,(8)" = (1 - 6,(9))"

From (2.35) and (2.38) we have

(2.100) ijU?Re = e PN, g — e P Ry(tx, Dy, Doy R, e,7) V00
+ e PNy, Cj(t, 2, Dy, Dy Ry e, y)v
t+e BAJ¢j77([PR,8> V] = Cj(t,, Dy, Dy Ryg, 7))o
=e BN, gr. — Ej(t,x, Dy, Dy; R, e,7,B)(1 —0,(D,))v
+ Cj(t,x, Dy, Dy; R, 2,7, B)(Dy); Pv

+ C3(t,x, Dy, Dy; R, 2,7, B)O,(Dy ),
where }N%j (t,z,7,&; R, e,7,B) € Sf?o_l’_oo uniformly in y and ¢, C (¢, , 7, §; R,
e,v,B) € S{’})—l (1 =1,2) uniformly in v and € and v, is ¢, in §2.2. Indeed,

we have
e PNO = (14 (€))7 < 2%())"

if Cj(t,z,7,&; R,e,7v) # 0 and |£| > 3v/2. Since

Ui (€)(1 = 0,()e PHOW,(€) = ¥;(€)(1 — 6,(€)),
Lemma 2.17, with (2.100), yields

mo g
i) Y / e DEDLY' (1L~ €, (D))ol ds
<A@ { [ 16702 0000, s
-3 [N DD, (D,
=0

+7_1Z/ lle™"* D (Dy)\ - o7z ds}

for B> w1+ 1,1 € R, t € [0,30] and v > ~(B), with modifications of
Cy(B) if necessary. Put v(l) = max{y(v; +1),4C(r; + 1)}, and let [ € R
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and vy > (/). Then (2.101) gives
mo ot
(2.102) Y / le™ " DY (D) 0= 172 ) s
p=0"0
t
< 20[(1/1 + 1){/ H€778<Dx>£y+ylgR,€<37x)H%Q(R,’;) ds
0

m—1 .t
+—2£3,/£ &7 DE(D, Y3710, (D)ol s}

+Z/w%w O, (D)o

for t € [0, 30].
Lemma 2.18. For k € Z. there is Co(k) > 0 such that

k
(2.103) D (D) *ull 2y < Co(k) D I(De £ i9)"(Da)s  ull 2wy,

pu=0

where | € R and v > 1. Moreover, for k € Z there is C(k) > 0 satisfying

(2.104) Z IDE (D)5 " (€7 ) [l 2z

M@

< 71T D D) ul

=
I
o

k
k) S DD (500 | 2 ),
©n=0

where l € R and v > 1.
Proof. Noting that

Dyt D) u = D (D) F 1Dy £ iy)u F iy Dy (D),

we can prove (2.103) by induction on k. (2.104) easily follows from (2.103).

O
Since
(2.105) Do THETTH <) < 2 Yo T
u=0 p=0
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Lemma 2.18 gives
(2.106) I{(Dy, D )>T<Dx>£/@7(D ) (e xo(t)0)l|72 i)
>C” ZH@ DI (Dy)y " 04(Da) (xo(H)0) | L2y

361

> C™ 12/ He—vtDu >?_M+ZGV(DI)UH%2(RQ) .

Since x1(t) = x2(t) = 0 if ¢ > 66y, it follows from Lemma 2.5 and (2.104) —
(2.106) that

m 301
@107 [ e DD O (Dl
n=0
631
<[ e D g B
0

m 661
T / e~ DD N2 g d

where C] > 0 and Cj y >0 ( N € N). From (2.102), (2.107) and Lemma 2.6
we have

m 601
3 / e DE(D )02 g
=00

601
<t [ e D g gy
0
651
+77'Cy Z/ le™"* DY (D) N7 2y dt
for l € R and v > max{~(l),y(l + vo — 1)}, where

G =201y + 1)+ 2C (1 + 1) + 1)Cl g 1
+ C2C1H0—1(n + 1) + 1)(Clmgvgsn—2 + 1),
Cl,N :Cl+m+u0+u1—2,N+m+uo+u1—2 + 2C (1 +1) + 1)Cl/+m+ul—1,N+M+V1—1'
Therefore, we have the following

Lemma 2.19. There are C(I) >0 (1 € R) and v > 0 satisfying
mo 66
1—
S [ UDED gy
=00
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601
<cw /0 (D) P(t, 2, Dy, Dyi R, €02 g dt

forl € R and v(t,x) € C*(R; H*(R})) with v|t<o = 0.

Let f(t,z) € C*([0,00) x R") satisfy D! f(t,z)}i—o = 0 ( j € Z), and
recall that fr. € EP¥/Z(R™1) was defined by (2.23) and (CP)g. has a
unique solution vg. in E¥/2H(R™), where R > 1 and e € (0,1]. We note
that suppvgr. C {(t,z) € R""; (t,z) € K ) for some (s,y) € supp fr.},

(

(8,9 )
especially, vg.(t,z) € C*(R; H*(R?)). Let 0 < ¢ < ¢(< 1), and put

WRee = VRe — Ure. Then we have

P(t7 x, Dt7 Dxa Ra e)wR,a,&" = fR,a - fR,e’

+05, (1)) Y (ajalt,z; Re) — aja(t, x; R,e)) D" Dvp.

J=1lal<j-1

+ 505 (105, (=) (xre (1) = X (£))(910rp) (¢ Dy, D v
= fR,e,a’

It follows from (2.11), (2.12), (2.24) and Lemma 2.19 that
601 l 461 l
2 2 2 2
[P ey < [P e = )

m 261 ) B .
Cae Y [ IDUDN " v g
j=0"0

601
SA KD (e — o) o

601 )
+ O+ +m)Crew / (D)™ o7y dt
0
—0 asel0,

where

CR,E,E/ = SUP{‘aj,a(t> X, R> 8/) - aj,a(t> X, Ra 5)’ + ’XR,E/<y) — XR,{-:(y)’;
t€10,20], z,y e R", 1 <j<mand|a| <j—1}.

Thus, from Lemma 2.19 we have
m 601 ) ‘
Z/O HDg <Da:>l_ij,a,e’||%2(Rg) dt -0 asel0.
§=0
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This implies that there is vg € D'((—00,6d;) x R™) such that
Vr1/; — Vg In D'((—00,601) x R") as j — oo,
since vpg1/;(t,z) = 0 if ¢ < 0. Then we have

(2.108) P(t,z, Dy, Dy; R)ug = fr in D'((—00,6d1) x R"),
m 65 ‘

(2109) S / |DID) g 2agy dt < Ci(f) for I € R,
. 0

(2.110) suppvg N (—00,60;) x R™ C {(¢,z) € [0,60;] x R";
(t,x) € K+  for some (s,y) € supp fr},
where fr(t,z) = O, ()O(|z| — R) f(t, ) and C)(fz) > 0. (2.109) gives vy €

C™1([0,68,]; H>*(R")). This, together with (2.108), gives vp € C*([0, 65,];
H>(R™)). Moreover, we have

(2.111) P(t,x, Dy, Dy)og = f(t, )

for t € [0,4;] and z € R™ with |z| < R+ 1. Note that Lemma 2.19 is valid,
replacing P(t,x, Dy, Dy; R, ¢) by P(t,z, Dy, D.; R). Therefore, for [ € R and
k > m there is Cj; > 0 satisfying

k 661 . .
(2.112) Z / |DID,Y ()2 g
651 o
< ClkZ/ | DI(D Hyfmfjp(tal'aDt,DmQR)UH%%Rg) dt

for v(t,z) € C([0,66,]; H*(R™)) with DJv(t,z)|;<o = 0 ( j € Z,). Indeed,
for k > m there are dy ,(t,2,&;R) € Sk TE0,01] x T*R™) (v = 0,1,
0<p<m-—1+vk—-2m+1)) suchthat

k—m
D"y = Zd (t, 2, Da; R)Df'v + Y dy ,(t, 2, Dy R)DY P(t, , Dy, Dy R),

n=0
which can be proved by induction on k ( > m).

Lemma 2.20. Assume that u € C([0,6,] x R"), and that Diu|—o = 0
for j € Z,. Let (ty,2") € [0,81] x R™, and assume that

K(_t0=550) N Supp P(t’ Z, Dtv Da:)“ = @

Then (to,2%) ¢ supp u.
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Proof. Choose @ € C*([0,00) x R") so that |;<5, = v and u(t,x) = 0 if
t > 201, and put

FR(ta'r) = P(twr?Dt?Da:; R)a(t7x)

We choose R > 0 so that K ., C {({,z) € [0,0:] x R"; [z] < R}. Note
that Fr(t,z) = P(t,z, Dy, D,)u(t,z) if t € [0,d,] and |z| < R+ 1. We can
write

P(t,x, Dy, Dy; R)(O(|2] = R)u(t, x)) = Gr(t, z),

Gr=0(z| = R)Fr+ [P(:; R),O(|z| — R)]u € C*([0,60,]; H*(R™)).

Then there is wg € C*([0,60,]; H*(R™)) satisfying

{P@J@DDDmRM%—%Eginmﬁ&]xRﬂ

wR(t, C(Z)|t§0 = O

Indeed, putting
GR,E(ta 33) = @251 (t) / . pi (t - S)f)a('r - y)GR(Sa y) deya
R+

we can construct wg as the limit of {wg1/;}j-12,., where wg. is a unique
solution in £¥/2H(R"*1!) of (CP)g. with fr. replaced by Gr.. From (2.112)
we have

O(|z| — R)u(t,x) = wg(t,z) for (t,z) € [0,6d;] x R".
It is easy to see that
K ;, 20y Nsupp G = 0.

So (2.110) implies that (to,z°) ¢ suppu, since |2°] < R and O(|z] — R) =1

near xr = V. O

By (2.111) and Lemma 2.20 we can easily construct a unique solution
u(t,z) in C*°([0, ;] x R™) satisfying
P(t,z, Dy, Dy)u = f in [0,6;] x R™,
{D@hozo in R" (j€Z,),
(2.113) suppun]0,d;] x R"
C{(t,z) €[0,0:1] x R"; (t,2) € K, for some (s,y) € supp f}.

Let uj(z) € C*R") (0 < j <m—1)and f € C*([0,00) x R"). If
u(t,z) € C([0,0,1]xR") satisty P(t,z, Dy, Dy)u(t,z) = f(t,x)in [0, 0,] xR",
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then for v € Z, there are aj,(t,z) € C*([0,00) x R") (0 < j < m+v,
la| < min{j, m}) such that

Dy f(t,x) = D{P(t,x, Dy, Dy)u(t, x)
m-+v

= D" ™u(t, z) + Z Z a}’va(tw)Dl”Jr”_ng‘u(t,a:)

J=1 |a|<min{j,m}
for (t,z) € [0,01] x R"™. For v € Z we define inductively

m-+v

um-l-l/(x) = D?f(twr)’tzo - Z Z a;‘/,a(O?x)D:um—i—V—j(x)'

§=1 |a|<min{jm}

Then, by the Borel theorem there is U(t,z) € C=(R"*) satisfying DJU(t,
z)|i=0 = u;(v) (j € Zy) and suppU C R x (J;Z,suppu;. For e > 0, putting
ue(t,x) = u(t,z) — O ()U(t,z) and f.(t,x) = f(t,x) — P(t,x, Dy, D) (u(t, x)
— uc(t,x)), we have

Dif(t,2)lio =0 (j € Zy)
P(t,z, Dy, Dy)u(t,z) = f(t,z) in [0,d;] x R",
Dlug(t, )| = 0 inR" (j€Z,),

since DY P(t,z, Dy, Dy)u(t, z)|i=0 = DY P(t,x, Dy, D) (O ()U(t, z))|t=0 (v €
Z.). Note that

m—1 00
supp f: C [0, 2¢] x (U supp u; U U supp Dif]t:()) U supp f.
=0 =0

Therefore, we can prove that for any f € C*°([0,00) x R") and u; € C*(R")
(0 < j <m—1) there is a unique solution u(t, z) in C*°([0, 6;] x R™) satisfying
(CP)s,, where s > 0 and

(CP) P(t,z, Dy, Dy)u(t,z) = f(t,x) in [0,s] x R™,
° Dlu(t, x)]imo = uj(z) mR" (0<j<m—1).

Let (to,z°) € (0,61] x R™, and assume that u;(z) = 0 near {z € R™; (0,z) €
K wop (0<j <m—1)and f(t,x) = 0 near K, .o, N[0,61] x R". Then

there is €g > 0 such that f.(t,z) = 0 near K, o N[0, x R"if 0 < e < ¢o.

(tvaO)
Therefore, (2.113) implies that (o, 2°) ¢ suppu,. if 0 < € < g¢, which proves
that (to,2°) ¢ suppu. Put

T =sup{s € (0,00); for any f € C*(][0,00) x R") and
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u; € C(R") (0<j<m—1)
there is a unique solution v in C*°([0, s] x R") of (CP);}.

Suppose that T" < oco. For t = T we can repeat the same argument as for
t =0, and define 6; > 0 and {C;} in the factorization of p(t,7,£). Then we
can show that the Cauchy problem

P(t, x, Dt, Dx)u(t, $) = f(t, .CE) in [T — 61/2, T+ 51/2] X Rn’
Dlu(t, x)|i=r—s, /2 = uj mR"(0<j<m-—1)

has a unique solution u € C®([T — 6,/2,T + 6,/2] x R") for any f €
C>([0,00) x R") and u; € C*°(R™) ( 0 < j < m —1), which contradicts the
definition of T'. So we complete the proof of Theorem 1.2.

3. Proof of Theorem 1.3

In this section we assume that the conditions (A-1), (A-2), (H)" and (D) are
satisfied. Moreover, we assume that a;,(t,2) (0<j<m—1,|a| =7j,j—1)
are semi-algebraic in [0, 00) for each z € R™ when n > 3. Let (to,2° &%) €
[0,00) x R" x S"~ ! and 6 > 0, and let T'(9),=;(0) € C>((0,6o]) N C([0,60])
(7 <7 <n) be real-valued functions satisfying the following:

i) to+71(0) >0 for 6 € (0,6

(
(i) T(0) = 0 and Z(0) = £°, where Z(0) = (Z,(0), -+ ,Z,(0)).
(iii) Z(0) € S" for 6 € [0, 6)).

(

iv) T'(¢) and the Z;(6) can be expanded into convergent Puiseux series of
6 € (0, 6.

We say that T'(f) and Z(0) satisfy the condition (T, Z) if the above conditions
(i) — (iv) are satisfied. We can write

plto + T(0),7.2(60) = [ [ (= = M (6: 7. 9)),

where \;(6;T,=Z) € C*((0,6p]) N C([0,6p]) (1 < j < m). We can expand
A;(6; T, =) as formal Puiseux series at § = 0 ( see, e.g., [16]). Let 1 < jo < m,
and put 7o = X\j,(6;T,Z). Note that hy1(to,70,6") = [1i<jcm, jzjo(T0 —
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A\ (0;T,2))%. So we may assume that (9,p)(to, 70,£°) = 0. We define the
condition C(tg, 10, £°, jo; T, =) as follows:
Ordgyo 7%11(111 lto + T(0) — s||sub o (P)(to + T(0),2° X, (0; T, =), Z(6))]
sE

< Ordgyo hm—1(to +1(0), X, (6; T, 2), (0))1/2

Here, for f € C([0,6]) Ordgyo f = v ( € R) means that there is c € C\ {0}
satisfying f(0) = c0”(1 + o(1)) as 0 } 0. If f(6) = O(6N) as 6 | 0 for any
N € Z., then we define Ordgo f = o00.

Theorem 3.1. Assume that the condition C(tg, Ty, £, jo; T, Z) is satisfied.
Then the Cauchy problem (CP) is not C*° well-posed.

We shall prove Theorem 3.1 in §3.2.

3.1. Preliminaries

Let (t0,&°) € [0,00) x S™1, and write

{r € R p(to, 7€) = (0rp)(t0, 7, €") = 0} = {70, -+ , Ty }

where 7(t9,£%) € Zy and 71 < 7o < -+ < Ty 0). Assume that 7(tg, %) > 1.
Then, by the Weierstrass preparation theorem there are 6; = §;(to,&") > 0,
05 = 05(to,£%) > 0, open conic neighborhoods T'; = T (to,fo) of €%, real an-
alytic symbols e;(t, 7, &; 10, £°) defined in {(t,7,&) € [ — dj,t0 + 0] x R X
(I \{0}); 7 — 05 < 7/[¢] < 75 + 6} and real analytic symbols a;(t,§) (=
aj(t, 6, to, 50)) and bj(t, f) ( = bj(t, 6, to, 50)) defined in [to — 5j> to + (53] ( j \
{0}) (1 <j <r(to,&°) such that the e;(t,,&;t9,£°) are positively homo-
geneous of degree m — 2 in (7,¢), a;(t,€) and b;(¢,€) (1 < j < r(to,&°)) are
positively homogeneous of degree 2 and 1 in &, respectively, and

a’j(t(bgo) = 07 bj(t()’go) = Tj,
€j (t7 T, 67 tO? 50) 7é 07
p(t, T, 5) = ej(tv T, 5; to, §O)<<T - bj(tv g))2 - aj(t) 6))

for (t,T, é-) S [t() - (Sj,t(] +5J] X [Tj — 6;,7']' +(5§] X (FJ ﬂSn_l). Put

8o (= 0o(t0,€°)) = min{d;; 1 < j <r(t, &%)},
8 (= 65 (t0,€")) = min{d}; 1 < j <r(to,&")},
7(t0,£0)

To (= Tolto, &° ﬂ r;.

95



Modifying 6y and T’y if necessary, we may assume that

1b;(t,€) — 75| +1/a;(t,&) < 25,/3

for 1 S] S T(to,go) and (t,g) S [to - 50,t0 + 60] X (FO N Sn_l). Puttlng

)‘j:i(t? f) = bj (ta 5) + \/ aj(ta 5)7

we have

p<t7 )‘j,i(taé)af) = 07
A (t,€) — 751 < 265/3

for (t,£) € [to — do,to + do] x (To N S™1). Moreover, modifying &y and Ty if
necessary, we have

(3.1) Ip(t, 7,8)| + |0-p(t, 7, &) # 0

if (£, €) € [to—00, to+-80] x (ToNS™ ) and 7 € R\ ;9" ;28 /3, 7420} /3].
When r(tg, %) = 0, we choose § > 0 and an open conic neighborhood 'y of £°
so that (3.1) is satisfied, where U?Zl -+ ={. Fix 2° € R". We microlocalize
the condition (L) as follows:

(L) (tg,20,¢0y There is C' > 0 such that

min{ min |t — s, 1}\$ub o(P)(t, 20,7, &) < Chpya(t,, 5)1/2
SER(E)

for (t,T, f) € [to — dg, o + 60] x R x (F(] N Snil).

Lemma 3.2. The condition (L), .0 ¢0) is equivalent to the following con-
dition:

(L) {400 ¢0y There is C'> 0 such that

(3.2) min{ min) It — s, 1}|sub a(P)(t,x°b;(t,€),8)] < Cy/a;(t, &)

SERo (f

if r(to,€%) > 1, 1 < j < r(to, %) and (t,€) € [to — do, to + do|x
(Fo ﬂSn_l).
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Proof. If r(ty,£%) = 0, then there is ¢ > 0 satisfying
(3-3) him—1(t,7,6) = (1 + |7])*"

for (t,7,€) € [to— do, to+ o] Xx R x (IgNS™ ). Therefore, (L), 400y always
holds if 7(ty, £%) = 0. So we assume that r(ty, %) > 1. Let 1 < j < r(tg, £9).
Then we can write, with C' > 0,

hm—l(ta >‘j,:t<t7 5)7 5) - 4a’j (t7 g)h;‘:(t, §)7
CHeEPmt < it €) < ClePm

for (¢,€) € [to — o, to + o] x (Lo \ {0}). Therefore, the condition (L), .0 0
implies that

(L)” ) There is ¢' > 0 such that

(to,x0,0

min{ min : |t — s, 1}|sub o(P)(t, ", N (t,6),8)| < Ch/a;(t,€)

SER()(E
if 1 <j <r(t,&") and (t,&) € [to — do, to + do] X (o N S™ ).

Now suppose that (L)’(’twoéo) is satisfied. If (¢,&) € [to — do,to + do] X (I'g N
S and 7 € R\ U;S‘i’go)[q — 0(,Tj + 0(], then (3.3) is satisfied with a
modification of ¢ if necessary. So we may assume that 1 < j < 7(to, &%) and
T € [1; — 8}, 7; + (], Then we have, with C' > 0,

(34) |T - )‘]}i(tv €)| < Ohm—l(ta T, 5)1/27
(35) \/a;(t,&) <{Im = Nt () + |7 = X= (£, ©)1}/2 < China (8,7,
for (t,f) € [to — 50,t0 + (50] X (FO N Snil). We can write

sub o(P)(t,2°, 7, &)
= sub o(P)(t, 2°, Nt (8,6),8) + (&, 7, 6) (T — N +(£,6))

for (t,&) € [to — 0o, to + o] x (o N S™ 1), where ;4 (¢, 7,£) are polynomials
of 7 with coefficients in C([ty — g, to + do] x (o N S™1)). This, together
with (3.4) and (3.5), implies that (L), 40 ¢0) is satisfied. Since there is C' > 0
satisfying

|SUb J(P>(t7 xO’ )‘j,:l:(t7§)a f) — sub U(P)(t7x07 bj<t7§)7€>|

< Cl)‘jd:(t?g) - b](t7§)‘ - O\/ aj(t7 5)
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if 1 <j <r(ty, &% and (¢,€) € [to — do, to + do] X (Lo N S™1), the condition
(L)2t07x0750) is equivalent to the condition <L)/(/to,ro,£0)‘ O

Let 1 < j < r(ty, &%), and put

53’(@95,5) = sub J(P>(t7x7bj(t75)7£)'

Let 0y > 0, and let Z(0) ( 1 < k < n) be real analytic functions defined on
[0, 6] and satisfy =(0) = £°, where Z(0) = (21(0),--- ,Z,(0)). First suppose
that a;(to +¢,=(0)) # 0 in (¢,6). Define

(3.6)  vjo(=v0(2))
=min{v € Z,; 9\0ya;(ty+t,Z(0))|i=0,e=0 # 0 for some | € Z }.

Then we can write
(3.7) aj(to+t,2(0)) = 6"7° Z 0FA;,(t) mear 6 = 0.
k=0

Since A;o(t) # 0 in ¢, we put
lj (E l](E)) = Ordtw Ajp(t) ( < OO)

With a modification of 6, if necessary, ~"0a;(to +t,=(#)) is real analytic in
[—50,50] X [0,00] and

85/(6’_”330%(750 +t, E(g)))h:oﬂzo =0 ifl< lj,

B (0770 a;(to + t,2(0)))]1=0.0—0 # 0.
It follows from the Weierstrass preparation theorem that there are a real an-

alytic function ¢; (¢, 8) defined in [—dy, do] % [0, 6p] and real analytic functions
ajr(0) (1 <k <l;) defined in [0, 6] such that a;;(0) =0 ( 1 <k <;) and

(38)  ct.0) 20,
(3.9)  alto +t,=(0)) = 070, (t,0)(tY + aza ()" ™" + - + ayy, (6))
for (t,0) € [—do, 0] x [0, 6], with modifications of &y and 6y if necessary.
Write

b

9+ ajr ()8 4+ ay, (0) = [ = 15006, 2)),
k=1
Tj,k(g; E) = Re tj,k(e; E),
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where the ¢;;(0; Z) can be expanded into convergent Puiseux series at 6§ = 0.
Write

[e.e]

a;((to + 7B, E)) 1+ £.20)) = 099 3 0 A ((to + Tu052)s — to + 1)

=0
S At

where A;0(t) = A;0(t) and L € N. Note that v; is defined as in (3.6). We
define

tjgi (= pjei(E)) = Ordyo Ajr(t),

Loan@ =ch| U (o +i/Lmei} + (Re))].

120, pj g, <00

Here ch[A] denotes the convex hull of A and Ry = [0,00). The T ;(Z) are
Newton polygons of a;((to + 7;%(0;2))+ +t,=(0)). Let 1 <k <I;. Suppose
that 8;((to + 7. (60;2))+ + ¢,2°,Z(0)) #Z 0 in (£,60). Then we can write

tB((to + 7jx(6;2))4 +t,2°,Z(0) E:ﬁ%k (t)g7sk+ L

where 1, (= ;,(2% Z)) € QN [0,00) and By 0(t) # 0. Define
fijhi (= fiixi(2% E)) = 14 Ordyyo By (),

P1gk(E) (S Tuga% D) =ch| U [+ /L )} + (R)?)].
iZO,ﬂj7k7i<OO
We define T'y j 1 (Z) = 0 if 8;((to+ 15%(6;Z)) 1+ +¢,2°,2(0)) = 0 in (¢,6). Next
suppose that a;(to+t, Z(0 )) =0in (¢,0). Then we definel; =1, 7;1(0;Z) =0
and I'o;1(Z) = 0. e Iso define T'y ;1(Z) (= 'y (2 ,H)) as the Newton
polygon of ¢f;(to + t, 2%, Z(F)).
Lemma 3.3. Let 1 < j < r(ty,£%). Assume that the following condition
(T) is satisfied:
(T) If T(0) is real-valued continuous function defined in [0,0y], T(6) €
C>((0,00]), T(0) = 0, to +T(0) > 0 for 0 € (0,00 and T(0) can
be expanded into a formal Puiseuz series, then

Ol"dew{ %un \to + T( ) - 5’ : Wj(to + T(9)>$0a5(9))|}

> Ordgyo /a;(to + T(6). 2(0)).
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Then we have 2I'1 ;,(Z) C To;k(E) (1 < k < 1)), where 2I' ;4,(2) =
{(2v,2p) € R?; (v,p) € T1%(2)}

Remark. We can also show that (T) is valid if 2I'y ; ,(Z) C T'p;x(Z) (1 <
k <1;) ( see Lemma 2.2 of [11]).

Proof. We shall repeat the same argument as in the proof of Lemma 2.2
of [11]. Choose real-valued continuous functions A\ (#) defined in [0, 6y] and
subsets Iy of {1,2,---,;} (1 <k < ;) so that A\,(0) € C*°((0,6y]) can be
expanded into formal Puiseux series, J_, Iy = {1,2,--- ,1;}, Ordgyo((to +
Tik(0;2))+ —to— Au(0)) = oo for 1 < p<r;and k € I,

AL(0) < Xo(0) <--- < A () for 0 € (0,0),
Ordgw()\kH(G) — )\k(e)) < 00 ( 1<k< rj — 1)

and A;(0) = 0 if Ordg o A1(0) = oo, where r; € N. Let 1 <k <I; and p > 0.
Putting

T,(t,0) = (to+ j,(0; )y —to+ 6Pt (1/2<t<1),
we have
Ordgyo a;j(to + 1,(t,0),=(0)) = min{v + pu; (v, 1) € Tojx(Z)}
for a generic t € [1/2,1]. Moreover, we have

Ord t T,(t,0
fewggllﬂ to +Tp(t,0) —s| =p

for a generic ¢t € [1/2,1]. Indeed, we have
Ordy,o mln |t0 + T,(t,0) — s
s€Ro(

> Ordgyo m |<to +ra(0:2)) 5 + 07— (to + 73, (6:E)) 4] = p
SHSLG

for a generic ¢t € [1/2,1]. On the other hand, we have

Ordgyo mm ]to +T,(t,0) — s
s€R0(E(

= Ord min to+7ik(0;2)) + 0t —s| <
o min |(to + 75(0: )+ | <p

for a generic ¢t € [1/2,1]. By assumption we have
Ordoyo{607t53;((to + 71(6: Z))+ + 07, 2%, Z(0))}
> Ordygyo \/aj((to + 7 5(0;2)) 4 + 60Pt,=(0)) for a generic t € [1/2,1].

This gives
min{v + pp; (v, 1) € 2I';x(2)} C Toyk(2),

which proves the lemma. ]
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3.2. Proof of Theorem 3.1

Let (tg,2°,€%) € [0,00) x R™ x S™1 0y > 0 and 1 < jop < m, and let
T(0),Zk(0) € C>((0,00]) N C([0,60]) ( 1 <k < n) be real valued functions
satisfy the condition (7, Z). Put 7o = A\, (0; 7, Z). Assume that the condition
Cltg, 2%, €%, jo; T, Z) is satisfied. It is obvious that

p(t07 60) = (a‘rp)<t07fo> =0
We use the notation in §3.1. Then there is j € N with 1 < j < r(tg, &%) such
that 7o = 7;. Recall that a(to, &%) = 0, b(t,£°) = 79 and
(310) p(ta T, 5) - e(ta T, f)((T - b(t7 6))2 - CL(t, 5))

for (t,7,€) € [to — do,to + do] X [T0 — 0p,T0 + 0p) X (FO N S" 1), where
e(t,7,&) = e;(t,7,&t0,&Y), a(t, &) = a;(t,&) and b(t, &) = b;(t,€). We note
that \;,(6; T, =) = b(to+1(0),=2(0)) £ +/al(to + T(0),=(0)). For £ € S" ! we
define

) # 0 in ¢,
)=0int.

R(E:a) = {{(Re Aa: A€ Qand a(), &) =0} if a(t,g

0 if a(t,
Then we have R(&;a) C Ro(§). Indeed, if a(t,&) # 0 in t, then there is a

real analytic function d(t) # 0 satisfying Da—,)(t,€) = a(t,§)d(t), where
£ € 8" is fixed. Therefore, we have

(311) Ol'dgu] RI%HD ’to + T( ) - S| < OI‘d@iO m7izn |t0 + T(Q) — Sl.
s€Ro

It follows from C(tg, z°, €%, jo; T, =) and (3.11) that

Ordg,o Rr(nln [to + T'(0) — s| |sub a(P)(to + T(0), 20, o (0;T,2),2(0))]
sE€ _

1
< 5 Ol"d9¢0 a(tg + T(Q), E(Q))

Now we assume that a(t,=(6)) # 0 in (¢, ). We shall consider the case where
a(t,2(0)) = 01in (¢,0), later. By (3.7) — (3.9) we can write

00 !
alto +1,2(0)) = Y ar(t)g** = 6"/ e(t,0) [ [ (¢ — i
k=ko =1

for (t,60) € [—do, o] x [0, 6], where L € N, I =1, ay,(t) #0, c(t,6) # 0 and

the ¢;(0) can be expanded into convergent Puiseux series. Put
1 -
(3.12)  po = 3 Ordgyo a(to +1'(0),Z(9)),
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pi1 = Ordgyo min, lto + T'(0) — (to + 7:(6: )|
x |sub a(P)(to + T(0),2° X\, (0; T, Z), Z(0))],

0 = Ordygyg min, lto + T'(0) — (to + 7:(6))+],
where 7;(0) = Ret;(0). Since T(0) = 0 and 7;(0) =0 ( 1 < i <), we have
§ > 0. The condition C(tg, 2%, £°, jo; T, Z) implies that p; < po. Put

T,(0) = T(0) +v#° for v € R,
and write
(3.13) sub o(P)(to + 1,(0),z, \j,(0;T,, =), =(6))
= 0" (¢(v,x) +0(1)) as @0,

where p € Q, ¢(v,z) Z 0 in (v,z). Then ¢(v, z) is a polynomial of v, whose
coefficients are C* functions of z, and y < py. If ¢(v,2°) = 0 in v, we replace
2% € R" so that é(v,2°) # 0 in v. There is ¢y > 0 satisfying

min [to 4+ T(0) — (to + 7:(0)) 4| > cof® for 6 € [0, 6y).

1<i<l
Since

l
a(to + T,(0), Z(9)) = 0"/ e(T,(0),0) [ [(T. ),

=1

Ordgyo(T'(0) —t:(0)) <6,

Va(to + T,(0),E(0)) can be expanded into a Puiseux series whose coefficients
are real analytic functions of v at v = 0. If ¢(0,2°) = 0, we replace T'(0)
and p; by T(6) + vo#° and p, respectively, choosing vy € (0,¢p/2] so that
¢(vo, 2°) # 0. Noting that

T(0) = 7:(0)1/2 < |T(0) +vob° — 7:(6)| < 3|T(0) — 7:(6)]/2

for 1 <<l and @ € |0,6], we have

pto = Ordgyo v/alto + T (6), Z(0))-

Therefore, we have ¢ = ¢(0,2°) # 0 and p = y; in (3.13) with v = 0, and we
may assume

(3.14) i1 — & = Ordgyg sub o(P)(tg + T(0),2° X, (0; T, =), Z(6))
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= min _ Ordgyosub o(P)(to +T1,(0),x,\;, (0;T,,Z),=(6)).

zeR", veR

Let x and ¢ be positive rational constants satisfying ¢’x < 1. We shall
impose further conditions on x and ¢’. We make an asymptotic change of
variables:

t=t(s;p)=to+T(p")+p s, z=ux(yp)=2"+p"""y.
Put

Py(s,y,0,m) = P(t(s; p), x(y; p), 00, 0~ "),

E(s,y;p) (= E(s,y;p,€)) = exp [ig{pl_én/ b(s1; p) dsy + p"*y - E(p‘“)}]’
0

where e = +1 and b(s; p) = b(t(s; p), Z(p~")).
Lemma 3.4. For k € N we have
(p™"Ds)"E(s, y; p)
= (st + ME D
+ 2 (p) L E(s, ¥ p),

where 11,,(p) denotes a polynomial of p of degree p whose coefficients are C*
functions of (s,y). Moreover, if q(,£) is a homogeneous polynomial of degree
m, then we have

(3.15) q(p’" D, epé(p’“))E (5,05 p)

= {(ep)q(b(s; p), Z(p™"))

+ %(83‘]) (5(35 p)> E(P_H))(atb)(t(s; p)7 E(p_"“))

+ na(p) }E(5,0; p).

L1 (s; p)F2(0:D) (¢ (s p), Z(p "))

Proof. The lemma can be proved by induction on k. Then (3.15) is obvious.
O

For (k, ), (11, 8) € (Z)"™" we denote
k,a fo'
POt @, 7,6) = DI DIOFOR P(t,x, 7,€).
A simple calculation yields
E(s,y;p)" Po(s,y, Dy, Dy)(E(s, y; p)u(s,y))
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— 1 «a K —0'k
=B(s.y0)" Y, APt 0),2(ys0), 0™ Das 17 D) B (s 3 0)}

rai<m
x (p™D,)(p' 7" D, ) u(s, y)
=B(s.000)7" Y - ,{P’”‘ (t(s;0), 2(y; p), P Ds, ep=(p~ ")) E(s, 0; p) }

(ko) |<m
« (pénDs)k(pl—d’NDy)au(s7 y)
= [(Ep)mp(t(S; p);b(s;p), E(p™"))

+—<spyn—1{¥i<62p><< 0, Z(p) (@) (53 p), E(p7))
;). (s ), Z(67)) } + Tna(p)

p).b
p).a
«) o) ><ma-»ﬂmx»ﬁm
L ) 50, Blsi ). 507")) + W)} (D)
yn—h—lal

+Z;§j{@%J—N®wMM@mapw
k=0 0<|a|<m—k o
+ o ijal-1(p) (0D (07D, )"

mk\a|

+Z > { P (5 0),b(s: ), Z(p 7))

k=3 |a|<m—k

a1 (p) (™ D) (0" D)

S (ep)m=i=k=lel g o) ) o
2 {Tpmii (t(s:0),2(y; p), (55 p), E(p™"))

i=1 0<k+|a|<m—i
+ i k—jaj-1(p) } (PéRDs)k(ﬁl_‘%Dy)a] u(s,y)
= ampmﬁp(s, y, Ds, Dy)u(s,y).
It follows from (2.63), (2.70), (3.10) and (3.12) that
p(t(s; p), b(s; p), Z(p™"))
= —e(t(s; ), b(s; p), Z(p~"))alt(s; p), Z(p™"))
= O(p %) as p — oo,
( p)(t(s:p), b(s; p), E(p™"))
—(0-€)(t(s: p), bls: p), Z(p™"))a(t(s; p), Z(p™"))
( 2p0

p_ ) as p — o0,

p);
b

@)
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= 26(15(8; p)b(s3p), E(p")) + O(p~2"%) as p — o0,
(3.17) (3229)( (55.0), b(s3 ), Z(p~"))(Dub) (¢ (55 p), E(p "))

= 5(@8723)( (550), b(s3 ), E(p™"))

3.(3 e)(t(s; ), b(s; p), E(p~"))(Bsa) ((s; p), E(p ")) + O(p~ ")

p),b(s:p), Z(p™")) + O(p~"°") as p = oo,
1), Z(p7")) = O(p™""") as p — oo,
By (3.13), (3.14) and (3.17) we have
(3.18) (3219)( (530), b(s5 p), Z(p™)) (0:) (t(53 p), E(p™"))

+Pm 1(t(s:), 2(y; p), bls; ), Z(p77)
= sub a(P)(t(s; p), z(y; p), b(s; p), Z(p™")) + O(p™"")
= p =95 (e(s,2%) + 0(1)) as p — oo,

since 13 < jp. Noting that

T(p™) = 7o~ )|/2 < [t(s: p) — to — 7(p~)| < BIT(p~") — 7p)]/2
if |s| < ¢o/2, we choose sy € (0, ¢p/2] and € = £1 so that
(3.19) {ec(s,2°) Je(to, 10, €"); |s] < 8o} N (—00,0] = (.

Assume that
1//41 > + (S,

and put
=(1—=(m+kK)/2.
Then we have
20g 4+ 26k —2 = —1— (1 — I)k.

A simple calculation yields
(3.20) exp[—ip” (s, y; P Pp(s,y, Ds, Dy)(explip™ (s, y; p)lu(s, y))
= | PP TR ((1/2)(82p) (t(s; ), b(s; p), E(p7) + O(p ™))
X ((0sp)? + (p™°1)03p + 2p™0sp - Dy + p~2* DY)

65



+ep =% (sub o(P)(t(s; p), (y; p), b(s; p), Z(p "))
+O(p~1ommtn) + O(p 07}
+ p O (P p(t(s; p), bs: p), E(p7T)))

b I P ) (15 ), B p), ) + O )

X (Ostp + p~ " D)

lal=1
x (0yp+p " Dy)
+ ) (P al) (PO (E(s p), b(s; p), E(p 7)) + O(p 1)
|a|=2
X {(Vyp)* + (p™" /1)y ¢
+p > 0P DI+ o DgY
B<a,|Bl=1
+ ) PR () (15 p), b(s; ), E(p 7)) + O(p 1)
lal=1
X {8890 ) 83790 + (P_Vo/i)asagép + p_VO 5P - DZ(/X
+p 059 - Dy+ p " DDy}
k+la|—j—18]

+ Z Z Z Z pluo—(l—ém)k—d’/ﬂa\

3<k+|a|<m j=0 B<a
X o, p ) DID)
k4lal—j—|6]

+ Z Z Z Z Z pluof(lf&f)kfé’n\odfi

i=1 0<k+|a|<m—i j=0 <«

X qDZ,a,j,,B,l(@? p_l)DgDyB U(S, y)

as p — oo, where Osp = 0sp(5,y;p), Oy = O5p(s,y;p), Vyp = (Oy 0, -+,
Oy, ), 1k, o j,ﬂ,l) ={(h,7) € (Zy)"" h < k’—j vl <la| =B, 1 <h+

Y < E+]al-

—[B] =141} and the $y o 5:(, p") and the &, 5 5,(0, p7")

denote polynomlals of { sﬁygo} hA)el(kagsy and p~t. We choose k0 € Q

as follows:

k= (o + (1+X)8)~!, & = po+39,

where X = min{1/2, (1o — 11)/(36)}. Then we have

(3.21)

{

0<dr<l, 19>0, vyg+20k—22>—2uykK,
v+ 20k — 2> vy — (210 — 6)k — 1,
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=1y — 0Kk —pok if X =1/2,

3.22 + 20k — 2
(3.22) 7 " {>V0—5/li—uoli it X #1/2,

(3.23) 2y + 20Kk — 2 > 21y — 20K,
> vy + 20k — 2 if (g — p1)/(30) > 1/2,
(3.24) 2w — 20k = vy + 20k — 2 if (jig — )/ (30) = 1/2,
<vo+ 20k —2 if (ug—p1)/(30) < 1/2,
(3.25) 20 + 20k — 2 > 2y + 0k — 1 — 0k,
>y +20k—2 if X > 1/3,
(3.26) 2w+ 0k — 1 — 'k = vy + 20k — 2 if X =1/3,

<y +20k—2 if X <1/3.

Moreover, we have

(3.27) Vo + 20k — 2 > k(g — (1 — 0K)) + |a|(vo — 0'K)
if k+ |a| > 3,
(3.28) vo+ 20k — 2 > k(g — (1 — 6K)) + |a|(vo — 0'K) — i

ifi > 1 and k+ |a| > 0.
Put
’}/0:55(1—)() (26/%/2), l():—[—Vo/")/O]—l

Then we have

2up + 20Kk — 2 — 2y + 0k — 1 — 0'K) = o,
2y + 20Kk — 2 — (219 — 20'K) = 27,

lo = 0 if and only if pug — 1 <9,

lo > 1 if and only if gy — g > 0.

We also put

lo

o(s,yip) = Y p M pk(s,y5p) for (s,y,p7") € Q,
k=0

where Q = [—sg, 0] X Vo x (0,p5'], Vo = {y € R"; |y] <1} and py > 1. By
(3.20) — (3.28) we have

(3.29)  exp[—ip™w(s,y; p)|Ps(8,y, Ds, Dy)(explip”p(s, y; p)lu(s, y))
= P2 (1/2)(029) + O(p7"))
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x ((Ospo)® +2((1/2)(07p) + O(p™)) ™
x U= (sub o (P)(t(s; p), 2 (y; p), b(s; p), Z(p™"))
+O( (Ho—p1+0)K ))

lo

+3 7 0 ((1/2)(82p) + O(p~ ) {2(Dsp0) - (Do)

k=1
+ 5 (s,y5 0500, s Pr-1)}
+ o7 {((0%p) + O(p™1)) (Bsipo - Ds + (5,95 p; 005 -+ P1,)

+ p YELE (s, y, Dy, Dy; p; 0, - - ,sozo))}]U(s,y)

for (s, p1) € 0, where L € N, 0o = duu(s.; p) and (9%p) = (92p) (s

p), b( ) =(p ). Here ® (s, y: pi g0, 5 1) (1 <k < lo) and ©(s, y; p
©o, -+, ¥y, are polynomials of derivatives of wo(s,y; p), - , pr—1(s,y; p) and
gpo(s, y;p), -, 01, (8, y; p) with coefficients in B(ﬁ), respectively, and L°(s, v,
Dy, Dy; p; o, -+, ¢1,) is a differential operator of order m whose coefficients

are polynomials of {9L050k(s, y; p) Yo<k<iy, i+]aj<m With coefficients in B(Q).
B (ﬁ) denotes the set of C* functions defined in € with bounded derivatives.
From (3.16), (3.18) and (3.19) we may assume that
(s, y; p) =e((1/2)(02p) + O(p~t)) "l =0
x sub a(P)(t(s; p), z(y; p), b(s; p), E(p™")) & (—00,0]

for (s,y,p7!) € Q, modifying po if necessary, where (s, y; p) is the quantity
n (3.29). Define

©o(s,y; p) / VU (s1,y;p)dsi +ily)> for (s,y,p7Y) € Q,

where /z for z ¢ (—o0, 0] is the branch satisfying Re /z > 0. Then there is
c1 > 0 such that

Im o (s, y; p) > ci1(so — 8) + |y|?,

Ospo(s,y; p) = =t/ Y(s,y;p) # 0

for (s,y,p7!) € Q. Now we can repeat the argument at the end of §4 of [11]
to complete the proof of Theorem 3.1 if a(t,Z(6)) # 0 in (¢, 6). Next consider
the case where a(t,=(0)) = 0 in (¢,0). Then we take T'(#) = 0 and Z(0) = £°.
Modifying (to, 2%, £9) if necessary, we may assume that

sub 0<P)(t0’ 930, )‘jo (Ha 0, 50)’ 50) 7& 0,
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where ), (0;0,¢°) = 75. We make the following asymptotic change of vari-

ables:

1/6

=t(s;p) =to+p VPs, w=ua(y;p) =2+ p .

Similarly, we have

exp[—ip"%p (s, y; )| By(s,y, Ds, Dy)(explip*® o (s, y; p)lu(s, v))

= [0 H(1/2(@2p) (105 0),B(5: ), €) + O ™)
X ((0s0)* + (p~V° )20 + 20" /%0sp - Do+ p~ /2 D7)
+esub o (P)(t(s; p), 2(y; p), b(s: p),€%) + O(p~ )}
+ > p S (s p), b(s; ), €%) + O(p )

lal=1
X (Osp - 0%+ (p7 /0 /)0,050 + p~ /%050 - D
+p_1/68590- Ds-f—p_l/?’Dng)
2—|B|

4 Z Z Z pl/675/3@0,a,0,6,l<90>Pil)Dg

la|=2 B<a 1=0
k+|a]—j—|B]

+ Z ZZ Z p1/6—2k/3—5|a\/6(1)&&7].7571(%p_l)Dng

3<k+|a|<m j=0 B<«
k+lal—j—8]

+ Z Z Z Z Z pl/672k/375|a|/67i

i=1 1<k+|a|<m—i j=0 <o
X By o 5a(0,p”)DID | uls,y),
where b(s; p) = b(t(s; p), £°). Noting that

1/3—5/3=—4/3(< —7/6)
(k+ |a])/6 — 2k/3 — 5|a|/6 < =3/2(< —=7/6) ifk>1and k + |a| > 3,
(k+ |a])/6 —2k/3 —5|a|/6 —i < —=3/2(< —T/6)

ifi>1land k>1and k+ |o| > 1,

we can also repeat the same argument as above, which proves Theorem 3.1.

3.3. Proof of Theorem 1.3

First we assume that n = 2, and that the Cauchy problem (CP) is C'*
well-posed. Let (tg, 2%, 79,£%) € [0,00) x R? x R x S satisfy p(tg, 10,£°) =
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(0-p) (o, 70,£°) = 0. Then there is j € N with 1 < j < r(t,£") satisfying
7o = 7;. Here we have used the notations in §3.1. We omit the subscript j,
i.e., we write a(t,€), b(t,€), § and I for a;(t, &), b;(t,€), 0; and I';, respec-
tively. Moreover, we put

p(t,a,€) = sub o(P)(t,x,b(t,£),€)

for (t,x, &) € [to—0,to+3] x R" x (T'\ {0}). Let e be a vector in S! satisfying
e 1 &Y and choose 6y > 0 so that Tg = {\(£° + fe); A > 0 and |0| < 6} C T.
Since n = 2, I'y is a conic neighborhood of £°. We put

a®(t,0) = a(t,* £ 0e), bE(t,0) = b(t,£° + fe),
BE(t,0) = B(t,2°, € £ fe).

Suppose that a*(t,0) = 0 in (¢,0) and S7(¢,0) Z 0 in (¢,0). Then, taking
T(#) = cf and Z(0) = (£° + Oe)/|£° + Oe| with some ¢ > 0, we have

Ordygo min{ IIllIl(e) lto + T(0) — s, 1}

X |B*(to + T(0),b" (to + T(6),0))]
< Ordgyo b1 (to + T(0), b (to + T1(0),6),Z(0))"/? = 0,

since a®(t,0) = hy,_1(t,b(t,0),2(0)) = 0 in (¢,0). Theorem 3.1 implies that
(CP) is not C'* well-posed, which contradicts the assumption of §3.3. Next
suppose that a™(t,0) £ 0 in (¢,6). Then there are vy, € Z, such that

ak( o= +( ) |i=tg, 00 =0 if k <,
007" a* (t,0))|i=to,0-0 # 0.

Therefore, by the Weierstrass preparation theorem there are real analytic
functions e* (¢, §) defined in [ty —4d, to+8] x [—0y, fp] and real analytic functions
af(0) (1 <k <1) defined in [0y, 6] such that a;(0) =0 (1 <k <) and

a*(t,0) = 0"e*(t,0)¢*(t,0) for (t,0) € [ty — J,to + 6] x [0, O],

where ¢*(t,0) = (t —to)' + af (0)(t — to)" "t + - - - + a(#), with modifications
of § and 6y if necessary. Now we can repeat the argument in §5 of [11] to
prove Theorem 1.3, replacing b(t, z,£) and m by f(t, z, ) and [, respectively,
when n = 2.

Next assume that n > 3. Let (tg, 2%, £%) € [0,00) x R x S"~! and assume
that (L){, 00 is not satisfied. Then there is jo € N with 1 < jo < r(t,£°)
such that (3.2) with j = jo does not hold. Recall that b,,(to,&%) = 7,
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and aj,(t,€%) = 0. We may assume that a;,(¢,€) #Z 0 in (¢,€). Indeed,
if a;,(t,€) = 0 in (¢,€), then we have sub o(P)(to, 2, bj,(to,£),€%) # 0,
modifying (o, &%) if necessary. With T'() = 0 and Z(6) = £ the condition
C(to,2°,€° k; T, Z) is satisfied, where 1 < k < m and A\, (t,&) = b;,(t,€) —

a;,(t,€) = b, (t,€). Theorem 3.1 implies that the Cauchy problem (CP) is
not C'*° well-posed. We also choose § > 0 so that

(t, &) € (to — do, to + 0o) x Ty if [t —to|* + € — €7 < 47,
and define

A={(t,&y) eR™™ Jt —to|* + € =€) < 6% t > 0 and y = a,(t,€)},
B={(t,&y) e R [t —to]* + £ — &> < 6% ¢t >0 and

y = |sub a(P)(t,2°, b, (t,€), €)%},
C= {(t,g,y) ER™ |t —to + € — O < 6% ¢ >0 and

Yy = min{ min |t — s|?, 1}}

sE€R0(&/I€1)

It is obvious that A and B are semi-algebraic sets. Put

Zo= {6 e R™ € — €2 < 6% Dy(so, &) # 0 for some sy € R},
=, = {£€R™; |6 — € <% Dy_ja(s,6) = 0 for any s € R
and Dpys—;(so,&) # 0 for some sp € R} (1< j < M).

Note that the Z; are semi-algebraic sets and that
M
NE=0 (j#k), I ={cRm |- <o)
§=0

Chosse 0’ > 0 so that ¢/ <1 and
{t+ireC;te[-0to+2], TeR, |7 <} CQ,
where (2 is the complex neighborhood in §1. Put

D; ={(t,£) e R"Y; £ € 5;, Dyr—j(t1 +i7,6) =0, 1 € [t + 2],
TER, || <, ta >0, th=tTand t = (t, +1)/2} (0<j< M),

M
D= U D;.
§=0
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Then we have

C={(t.&y) eR™ |t —to] +]€ - P < 0% £ >0
“8,§)eDor s=t—1",
|t —s|> > |t — 3|* for any (s,&) € D and y = |t — 5|*},

which implies that C' is semi-algebraic. Putting

A ={(p,t,& \) € R"3; there are y,u,v,w € R satisfying

(t7 67 y) E A’ (t7 67 u) E B7 (t’ 57 U) e C? py = 17
w((|€ — 50|2 + |t — t0|2)puv +1)=1and A = puvw},

we can repeat the argument at the end of §6 in [11] to prove Theorem 1.3
when n > 3.

4. Remarks

Theorem 1.2 is valid for any set-valued function R(§) : S" ! 3 &€ — R(€) €
P(C) satistying (1.2), where P(C) denotes the power set of C. Therefore,
there are various choice in defining the condition (L). The following lemma
clarifies the situations.

Lemma 4.1. The condition (L) is satisfied if the condition (L) is satisfied.

Lemma 4.1 easily follows from Lemma 4.2 below and the compactness
argument. Let U be an open subset of R", and let a(t, &) be a real analytic
function defined in [0, d] x U, where d; > 0. Then there is a compact complex
neighborhood 2, of [0, dy] such that a(t, £) is regarded as an analytic function
defined in Q, for £ € U. We assume that a(t,&) > 0 for (¢,€) € [0,8)] x U.
Let b(t, ) be real analytic in [0, 6] x U. Let Ry (€) : U 3 €+ Ry (€) € P(C)
satisfy #Ry(§) < Ny for any £ € U, where Ny € N. We choose 6 € (0, 1] so
that [—0,d0 + ] C Q. Let ¢ € (0,1], and let R,5.(£) ( C C) be a set-valued
function defined for £ € U satistying the following:

(1) SUP¢ecrs #Ras.0(8) < o0.

(i) f £ e U, alt,f) Z0int, X € Qy, a(N,€) =0, |ImA] < 0 and Re ) €
[—9, 00+0], then there is s € R,.(£) satisfying | Im A| > ¢|(Re M)y —s].

Lemma 4.2. There are positive constants 61 and A = A(a, 9, c) indepen-
dent of & such that

mm{ min(g)\t—s],1}|b(t,§)] < AC\/a(t,€) for (t,€) € (0,6 x U

SeRa,é,c
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if, with C > 1,

mm{ min)|t—s\,1}]b(t,£)\ < OValt,€) for (t.€) €[0,8] x U,

s€ERy (€

where mingey [t — s| = 1.

Lemma 4.2 can be proved by combining the arguments used in the proof
of Lemma 2.1 in [12] and Hironaka’s resolution theorem. For details we refer
to [17].
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