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1. Main theorem

P(t,7,&) =7 —a(t,&) + b(t,7,€) +c(t) ((,€) € [0,00) x R"),
a(t,€) : homo. poly. of € of deg. 2,
a(t,&) >0 ((t,&) €[0,00) x R,
real anal. fun. of ¢ .
b(t, 7, &) = bo(t)T + bi (¥, €),
by(t,€) : homo. poly. of & of deg. 1.

Let kK > 1.

f(t,z) € £9([0,00) x R") (resp. £¥([0,00) x R™))
FON
VI'>0, Vh >0, 3C =Cryp >0
(resp. VI' >0, 3h >0, 3IC =Cr > 0) s..t.
0005 f(t,x)] < ChITII(j + |af)1®
for (t,z) € [0, 7] x R™ with |z| < T.

Similarly we define £%)([0, 00)), £®(R™), £7}([0, 00)), £} (R™) and so

OIl.

Assumption



(A) The coefficients of b(t, 7,&) and c(t) belong to £*(]0, 0)).

Here * denotes (k) or {x}.

We consider the Cauchy problem

(cP) {P(t, Dy, Dy)u(t,z) = f(t,z) ((t,x) € [0,00) x R™),
u(0,z) = up(x), (Dwu)(0,z) =ui(x) (ze€R")

in £%([0,00) x R™), where
ft,x) € £(]0,00) x R™),  wp(x),ur(x) € E(R™).
Note that

(i) if g(z) € DX(R") = EX(R™) N C3°(R™), then
VA>0,304>0 sit.

1G(&)] < Cy exp[—A\§|1/“] for £ € R",
where

q(&) = / g(x)e™™4dx . Fourier transform of g,

and that

(ii) if g(x) € DHR") = EFHR™) N C°(R™), then
dJA>0,3C >0 s.t.

9(E)] < Cexp[-Al¢]'"] for € € R™.

Prop. If 1 < k <2 (resp. 1 < k < 2), then (CP) is £") well-posed
(resp. 1% well-posed).

To state our main theorem, we need a set-valued function R(€) :
Sl s € R(E) € P(C), which satisfies the following:

VT >0, Ny € Z s.t. #{N € R(€); ReA < T} < Ny for £ € S" .

We note that R(&) is usually chosen as zeros of a(\,§) in A with some
modifications.



Main theorem Assume that x> 1, and that
0<3w<1/k st. YT >03Cr >0s.t.

1/(1-v)
G ol — b (t < Cpalt. €)1/ 2=2)
@ (o le=s)) " a6 < Cra(te)

for (¢,€) € [0,T] x S"~ 1.7
Then (CP) is & well-posed.

Remark (i) If we can take v = 0, (CP) is C*° well-posed. Here we may
assume the coefficients of b(t, 7,£) and ¢(t) belong to C*([0, 00)).

(ii) There is no difference in the results of Main theorem between for £*)
and for £%} (see Prop.).

(iii) From Prop. it is enough to consider the case k > 2. So we assume
that 0 <v < 1/21in (G).

2. OQOutline of the proof of Main theorem

Let T > 0 be fixed, and let A(¢,£) be a symbol in £* satisfying, with
some Cp > 0,

A(t,€)] < Cr(g)/" for (t,€) € [0,T] x R" if x = (k),

|A(t,8)| < Cr(&)” for (¢,€) € [0,T] x R™ if x = {k},

where v < 1/k is fixed.

To consider (CP) in £
<
To consider, for VA > 0,

((exp[A(Da)!/" = yA(t, D2)|P(t, D, Ds)
x exp[—A(Dy)"/" +yA(t, D,)])o(t, @)
= explA(Dy)"" — yA(t, Do) f (¢, @),
(t,x) € [0,T] x R",
v(0,7) = exp[A({D,)V/* — vA(0, D,)]ug(z), =z € R™,
| (D)(0,2) = exp[A(D)"/* — yA(0, D,)|ui (z), = € R,

(CP)4




where we choose v > 0 appropriately to obtain energy estimates and
f(t,z) € C=([0,T]; D (R™M), ugp(x) € DW(R") (k= 1,2).
+ «

If we can solve (CP)4, then
ult, 2) = exp[— A(D) " + 4A(t, D)ol 2)

satisfies (CP).

To show that (CP) is £*) well-posed we prove that (CP) has finite prop-
agation property. In doing so, we replace P(t,7,£) by

Po(t,7,6) =72 —a(t, &) —el€]* + b(t, 7,€) + c(t),

where ¢ € (0,1]. Then we need to apply the same arguments as in

[W] W., On the Cauchy problem for hyperbolic operators of second
order whose coefficients depend only on the time variable, J. Math.
Soc. Japan 62-1 (2010), 95-133.

So we first consider

(

(explA(DIYS — ~A(t, D) P-(t, Dy, Dy)
< exp[— AUDYV* 4 At D) (t. )
— explA{D) V" — yA(t, D) (1),
(t,) € [0,T] x R,
v.(0, 1) = exp[A({D, )% — yA(0, Dy)]ug(z), =z € R,
[ (D:v:)(0,2) = exp[A(D,)"/* — yA(0, Dy)Jui(z), =€ R,

(CP). 4

where A > 0 is chosen so that

" &mmwwﬂm@mcwmmﬂwm»

exp[2A(D )" ug(z) € H*(R™) (k=0,1).

Similarly, we have:
To consider (CP) in £}
<

To choose A > 0 so as to satisfy (1), and to consider (CP). 4 in the
Sobolev spaces



+ o
To prove Prop. we take
A(t,€) = 1()'"*.
Let us give an outline of the proof of Main theorem. Put

AE = + > (@) 10g(VIE— 9@ + 1+ (¢ - 5)(€)")

s€R(&/1€D)
7 Ton /(5 1 1+ 19).

We also put

W(t7€> = atA(tvg)
€+ ST (T = s)2(E) + 1+ (€)1 4 1

sER(E/IE])

For € € (0,1] and v > 0 we define

E(t, & w;y) =exp[—yA(t,€)]
x {|0w(t, &> + (a(t, &) + ele* + W (t, £)*)|w(t, €)[*},

and apply the arguments in §3 of [W].

atgs(t7 5; We; '7)

< [lg(t. OF /W (t,¢)
—{y =3 = (le()] +2Imbo(1)) /W (t, ) }W (£, )| Orwe(t, €)|*

- {Va’(tv é)W(tv 5)2 + ('Y - 3>W(t7 5)4 - |b1(t7 g)‘2
= e®)|W(t,€) = Balt, &) - W(t, &) }Hw:(t, /W (t, )]

X eXp[_7A<t7 g)]:

where
G(t,€) = exp[A()V" — yA(t, OIf (¢, ),
wi(§) = exp[A()* — yA(0, )] (&)  (k=0,1),
(2)  exp[3A()""/4]5(t, &) € C>([0,T]; L*(R™)),
(3)  exp[BA(E)Y" /4wy (€) € LAR™) (k=0,1),

>



{(eXp[—VA(t, OIP(t, Dy, &) exp[yA(t, §)we(t, ) = (¢, €),
w€(07 5) = wo(f), (atwa)(oa 5) = W (5)

From the unique existence theorem of ordinary differential equations it
follows that the solution w,(t, ) uniquely exists.

Fix T" > 0, and choose v > 0 so that
=3 — Je(t) = 2Tmby(t) > 0 (t € [0,T]).

If we can show that

(4) Oa(t, ) - W(t,6) S alt,§)W (¢, €)* + W (t,&)"
((Z,€) € [0, T x R"),
(5) b1, €)1 < alt, YW (L, €)* + W (¢, €)*

((t,€) € [0,T] x R"),
then, taking ~ sufficiently large, we have

OEe(t, & wes ) < exp[—YA(L E)]1G(, P /W (¢, ).

Therefore, we have
6)  E(t.&uwnir)
< £0.&wniy) + / expl—A(s, £)]|d(s, £)2/W (5. ) ds,

which proves Main theorem after several steps(see [W]).

(4) was proved in [W] in the case v = 0, if necessary, modifying R(&).
Let us prove that (5) holds. Fix (¢,&) € [0,7] x R".

(1) Ifds € R(E/|€]) s.t. |t —s|(E)V2 <1, then W(t &) > (€)V+1/2/\/2,
and, therefore, (5) holds.

(IT) Assume that |t — s[{(€)}/2 > 1 for Vs € R(£/]€]). Then we have

' -1
Wi(t, &) min )|t—5|> .

1.
> E@ (semmsl

If we can show that, with some X € [0, 1],

© u(t. ) <{1¢l (_min [~ 5l) a8}

sER(E/IE]
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—14 2(1-X)
x{|§]”< min \t—s]) } ,
s€R(E/1€])

then we can see that (5) holds. By homogenuity in £ we have

1-2
L=+ DX +20-Xp X == -
— VUV

1—2v

The condition (G) is obtained by (7) with X =

is satisfied, then (6) holds.
Fix v > 0 which was chosen large so as to obtain (6). Choose ' so that
v < V' < 1/k. Then we have

. Therefore, if (G)

— VvV

A(t,€)] < Co(€)” for t €[0,T7.

Therefore, we have, with some > 0,

!

exp[—C{E) [ |w(t, €)% + |0aw(t, €)[2} < Ed(t, & w;)
< exp[C{E) W|w(t, &) + |0aw(t, €)?} (¢ € [0,T)).

(6) gives
(8) Jwe(t, ) + [dpwe(t, )|

< exp[20(€)" W Iwo(&)* + [wi (&)} +/0 exp[2C(€)" 1§ (s, €)1 ds.

So by (2) and (3) we can see that w.(t,£) € C*([0,T]; L*(R™)), and that
we can define the inverse Fourier transform of w.(¢,&) in . Put

ue(t, ) = exp[=A(D) " + yA(t, Do) F¢ e (t,€)] ().
Then u.(t, z) satisfies

P.(t, Dy, Dy)uc(t,z) = f(t,x), (t,z) €[0,T] x R",
ug(o,l‘) = ul(w)a (atus)(oax> = U 37)7 r € R",
‘as(t7£>|2 + |atﬁ€(t7£>’2

1

< Cexpl-A(©V"/2)[ Y | expl24(€)Jan(©)

k=0



" / | exp[2A(€) /%) (s, €)[ ds].

Since P.(t,7,§) (¢ > 0) is strictly hyperbolic, we can estimate supp u..
Noting that u.(t,z) — u(t,z) in D'((0,7) x R") as € | 0, we can also
estimate supp u. Therefore, applying the same argument as in [W], we
can construct a solution u(t, z) of (CP) even if ug(z), uy(z) and f(¢,x) do
not have compact supports with respect to x. It is obvious that u(¢, x) €
C>([0,T]; E*(R™)). Let us prove that u(t,z) € £*([0,T] x R™). By the
equation we have
Di(t,€) = a(t, &)u(t,€) — bo(t) Dra(t, §),
where a(t, &) = a(t, &) — bi(t, &) — c(t). We shall prove, by induction, that
~ (&)
(9)  |DFi(t. )] < Clu) Aw) k3 S Bl expl-A(©) /2] (k> 0)

[1=
1=0

for (¢,£) € [0,T] x R™, where B > 0 is a given constant. Let

Dfa(t, €)| < C(a)A(a)"k!"(€)*,
[ Dibo(t)] < C(bo) A(bo)* k1"

for (¢,€) € [0,T] x R™. Then we choose A(u) > 0 so that

Aw) > Alb),  A(w) > /26.C(@)/B,  A(u) > 2¢.0(by)/B

in (9). Here ¢, > 0 is a constant satisfying

3 (’j) <eo (keZy)

=0

We may suppose that (9) is valid for £ = 0,1. Let £ > 0. Then we have

| Dia(t, ¢)]

k
(})1pate. - Dlate ol + 3 () 1D m(o) - D)

=0

IA

IN

=0
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C(EL) k k 1-k
' [A(u)2 Z (l) (k+ 2)Hl(k + 1)~

C'(bo) AN [+1 p
() ()

(G G sat-aig e

A(u) = e
< C(u)A(w)**2(k + 2)1
C(a) C R\ A®@) R
) [A<u>2<k T2k + 1) B Z (Z) <M>
i P —1)

[ c.C(a)  ¢.C(by)

| expl—aey /2]

Aw)?2B? " Au

\B



< C) AWk + 29y f—,>B expl—A(€)/" /2]

n=0
for (¢,€) € [0,T] x R™, which proves that (9) is valid.

Lemma Assume that u(t,z) € C*([0,T]; D*(R™)) satisfies (9). Then
we have

(&) DE(E™a(t, €))] < C(u) A(u) k! (€)1 exp[— A(€)/7 /4]
for (t,§) € [0,T) x R", k € Z, and o € (Z.)".

Moreover, we have
Kol
|DFDou(t, )| < C(u)’A(u)k(g—”> k% |a)®
A
for (t,z) € [0,T] x R", k € Z and o € (Z)".

Remark When x = (), we can take A — oo. Taking B = (A/(4k))",
we have A(u), (A/(4k))™" — 0, i.e., u(t,z) € EW([0,T] x R").

Proof For a; > 0 and k > 1 it is obvious that

k " k
<Z af) Z (ke Z,).
=1 =1
So we have

(319" < 52 O e < xpiingey

k
> <le B' < exp[rBY"(£)!/"].

0
Therefore, (9) with B = (A/(4k))" yields
()" Dy (€% a(t, )] < O(u) A(u) k(€)™ 1 exp[—A(€) /" /4].
Noting that
s < e BHDR (L D)1 explres'/t] < (¢/2) " FHOR R IR explrest )]
for ¢ > 0 and k,[ € Z,, we have
&) DE(E (1) < Clu) A (2) krfar

which proves Lemma. Il



3. Examples

Example 1 Let n =1, k1 € Zy, a(t,&) = t*¢? and b, (t,€) = /€. We
take
R(€) ={0} for £ € SO(={1,—1}).

Taking 0 < v < 1/k, the condition (G) is equivalent to

{1/ () < gk (1=2)/2=20) (4 2 [0, 7).

So we have

1 >k:(1—2y)

l1—v ™ 2-2v

20l —v)+2>2k(1-2v) <= @2k—-20v>k—-20-2.

(G) = I+

Therefore, the condition (G) is equivalent to

1 ki + 2
B st S R S
Vo S T =),

Here we consider (k+2)/0 = oo. Indeed, if k—2]—2 > 0, then the above
is obvious. When k£ — 2 — 2 <0,

2k —-20)v>k—-2-2 <—
k+2> (k—20—2)(1/v — 1), which is valid.

Therefore, if

k+2

(I) /€<1+m,

then (CP) is £* well-posed.

Remark Ivrii proved that (I) is a necessary and sufficient condition for
(CP) to be £%} well-posed (when k is even)(?).

Example 2 Let n =2, k;,l; € Z, (j =1,2), ks > 0, and

a(t7€> - tkl (thSI - 52)27 bl(t;§> - th& + tbfz.

We can write

bi(t,€) = (t"& +t=72)e — 2 (16 — &).

11



Put [ = min{ly, ly + ko }. We take

R() = {0, & /& |V rR2wy, -+ |&a /1| P2y, } for € € ST with & # 0,
{0} for £ € S* with & =0,

where

w; = expli{arg(&e/&) +2(1 — D} /ko] (I=1,2,--- ko).

Taking account of Prop., we assume that 0 < v < 1/k and v < 1/2.
Noting that

min |t —s| < [th2 — & /&Y™ if € € ST and & # 0,
SER(E)

we have

(G) —

(1—2v)/(1-v) <1,

tl2+1/(1—V) < tk1(1—2u)/(2—2u)7

Ix e [0,1] s.t.

tf+(1fA)/(1fu) 5 tk1(172u)/(272u)’tk2 _ 52/51|(1721/)/(171/)7/\/(162(171/))

if & # 0,

\tl_“/(l_”) < th(1=20)/@2=2v) . the condition for & ~ 0

—

(

(2ky — 20w > ky — 20y — 2,
0<A=hy(l—2v) <1,

(2k1 + 4ky — 2D > ky + 2ky — 2] — 2,

| (2K = 20)v > Ky — 21 — 2

<

(Jy +2> (k) — 20— 2)(1/v — 1),

ko +1> (ko —1)(1/v —1),

Ky + 2ky +2 > (ky + 2ky — 21 — 2)(1/v — 1),
| F1+2> (k1 —20-2)(1/v — 1)

12



<~

1+min{ b+ 2 hp ¥ 1 Mt 2ks 2 }>l>/£
(k1 =215 —2)4 (k2 — 1)+ (kb1 + 2k —20—2) ) v '
Here we have used the inequality
ki + 2ky + 2 < ky+2
(ky 4+ 2ky — 20 —2)1 — (k1 — 20 —2)4
Therefore, if
2 1 2 2
/-€<1—|—min{ Pt , ha + , Fat in— },
(k1 =2l —2)4 (ko — 1)+ (ky + 2ko — 21 — 2)

then (CP) is £* well-posed.
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