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We shall prove the following

Theorem 1. Let f(t) ∈ C∞(R) satisfy f(t) ≥ 0 ( t ∈ R), and assume that
Z ≡ {t ∈ R; f (t) = 0} has no accumulating point. Moreover, we assume the
following condition:

(A) If t0 ∈ Z is a zero of f of infinite order, then there are N∈ N andη > 0 such
that for anyε > 0 there is Cε > 0 satisfying∫ 1

0
(1−θ)N−1 f (t0 +θ t)dθ ≤Cε f (t0 + t)1−ε

for t ∈ [t0−η , t0 +η ].
Then there is g(t) ∈C∞(R) satisfying f(t) = g(t)2 ( t ∈ R).

REMARK. If for every t0 ∈ Z there isη > 0 such thatf (t) ↘ on [t0−η , t0] and
f (t) ↗ on [t0, t0 + η ], then the condition (A) is satisfied. In particular, if the set
{t ∈ R; f ′(t) = 0} has no accumulating point, then the condition (A) is satisfied.

To prove the theorem we need the following two lemmas.

Lemma 2. Assume that f(t) ∈ B(R), i.e., f(t) and its derivatives are all
bounded, and that for anyε > 0 there is Cε > 0 satisfying

(1) | f (s)| ≤Cε | f (t)|1−ε if −∞ < s< t < ∞.

Then, for any k∈ Z+ ( := N∪{0}) andε > 0 there is Ck,ε > 0 such that

| f (k)(t)| ≤Ck,ε | f (t)|1−ε ( t ∈ R).



Proof. For fixedN ∈ N andt ∈ R we have

f (t +s) = f (t)+s f′(t)+ · · ·+ sN−1

(N−1)!
f (N−1)(t)+

sN

N!
f (N)(t +θs),

where 0< θ ≡ θN(t,s) < 1. Now assume thatf (t) ̸= 0. We have

h j(t) := f (t)− f (t − j| f (t)|1/N)+
(−1)N jN

N!
| f (t)| f (N)(t − jθ j | f (t)|1/N)

= j| f (t)|1/N f ′(t)− j2

2
| f (t)|2/N f ′′(t)+

· · ·+(−1)N jN−1

(N−1)!
| f (t)|(N−1)/N f (N−1)(t) ( j = 1,2, · · · ,N−1),

where(0 <)θ j = θN(t,− j| f (t)|1/N)(< 1). Note that

|h j(t)| ≤ | f (t)|(1+ jNCN( f )/N!)+Cδ | f (t)|1−δ ≤CN,δ | f (t)|1−δ for δ > 0,

whereCN( f ) = sups∈R | f (N)(s)|, Cδ is the constant in (1) and theCN,δ are positive
constants. Put

A = ((−1)k+1 jk) j↓1,2,··· ,N−1
k→

.

Since detA ̸= 0, there is the inverseA−1 = (BN, j,k) j↓1,2,··· ,N−1
k→

. Therefore, we

have, with some positive constantsCN, j,δ ,

| f (t)| j/N f ( j)(t)/ j! =
N−1

∑
k=1

BN, j,khk(t),

| f ( j)(t)| ≤CN, j,δ | f (t)|1−δ− j/N for δ > 0

( j ≤ j ≤ N−1).

Lemma 3. Assume that f(t) ∈ B(R), f (t) = 0 ( t < 0) and f(t) > 0 ( t > 0).
Moreover, we assume that there is N∈ N such that for anyε > 0 there is Cε > 0
satisfying

(2)
∫ 1

0
(1−θ)N−1 f (θ t)dθ ≤Cε f (t)1−ε ( 0 < t ≤ 1).

Then, for any k∈ Z+ andε > 0 there is Ck,ε > 0 such that

(3) | f (k)(t)| ≤Ck,ε f (t)1−ε ( t ≤ 1).

Moreover, for n∈ N f (t)1/n belongs to C∞(R).
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REMARK. If for any ε > 0 there isCε > 0 such thatf (s) ≤Cε f (t)1−ε ( 0 < s<
t ≤ 1), then for anyN ∈ N (2) is valid.

Proof. Put

F(t) =
∫ 1

0
(1−θ)N−1 f (θ t)dθ · tN/(N−1)!.

Then we haveF(N)(t) = f (t). Indeed, we have

F ′(t) =
∫ 1

0
θ(1−θ)N−1 f ′(θ t)dθ · tN/(N−1)!

+
∫ 1

0
(1−θ)N−1 f (θ t)dθ ·NtN−1/(N−1)!

=
{
[θ(1−θ)N−1 f (θ t)]θ=1

θ=0−
∫ 1

0
((1−θ)N−1− (N−1)θ(1−θ)N−2)

× f (θ t)dθ
}

tN−1/(N−1)! +
∫ 1

0
(1−θ)N−1 f (θ t)dθ ·NtN−1/(N−1)!

=


∫ 1

0
(1−θ)N−2 f (θ t)dθ · tN−1/(N−2)! ( N ≥ 2),

f (t) ( N = 1),

which proves the assertion. ModifyingF(t) for t ≥ 1, we may assume thatF(t) ∈
B(R) andF(t) ↗. Since 0≤ F(s) ≤ F(t) ( s< t), it follows from Lemma 2 and
(2) that for anyk ∈ Z+ andε > 0 there are positive constantsCk,ε andC′

k,ε such
that

| f (k)(t)| ≤C′
k,εF(t)1−ε/2 ≤Ck,ε f (t)1−ε ( t ≤ 1),

which proves the first part of the lemma. Putgn(t) = f (t)1/n for n∈ N. Let δ > 0.
Then we can show by induction that there areCk > 0 ( k∈ Z+) satisfying

(4) |g(k)
n (t)| ≤Ck f (t)1/n−kδ ( k∈ Z+, 0 < t ≤ 1).

Indeed, (4) withk = 0 is valid. Suppose that (4) holds fork≤ ℓ. From the identity
ng′n(t)gn(t)n−1 = f ′(t), we have

ng(ℓ+1)
n (t)gn(t)n−1 = f (ℓ+1)(t)−n ∑

|α|=ℓ,α1<ℓ

ℓ!
α!

g(α1+1)
n (t)g(α2)

n (t) · · ·g(αn)
n (t),

whereα = (α1, · · · ,αn) ∈ (Z+)n and|α| = α1 + · · ·+αn. This, together with (3)
and (4) fork≤ ℓ, gives

|g(ℓ+1)
n (t)| ≤ n−1 f (t)−1+1/n{Cℓ+1,δ (ℓ+1) f (t)1−(ℓ+1)δ

3



+n ∑
|α|=ℓ,α1<ℓ

ℓ!
α!

Cα1+1Cα2 · · ·Cαn f (t)1−(ℓ+1)δ}

≤Cℓ+1 f (t)1/n−(ℓ+1)δ ( 0 < t ≤ 1),

which proves (4). Note that limt→+0g(k)
n (t) = 0 ( k ∈ Z+). Applying the mean

value theorem, we can prove inductivelygn(t) ∈C∞(R).

Now we can prove Theorem 1. We can assume without loss of generality that

Z = {t0, t±1, t±2, · · ·} and · · · < t−2 < t−1 < 0≤ t0 < t1 < t2 < · · · .

If t0 is a zero of f of infinite order, then by Lemma 3 we can chooseg(t) ≥ 0
neart0 so thatg(t) is in C∞ andg(t)2 = f (t). In the caset0 is a zero of order 4m
( m= 1,2, · · · ), we can also constructg(t)≥ 0 neart0. If t0 is a zero of order 4m−2
( m= 1,2, · · · ), then we can constructg(t) neart0 so thatg(t) < 0 for t ∈ (t−1, t0)
andg(t) > 0 for t ∈ (t0, t1). Next we extendg(t) in a neighborhood oft = t1,
choosing its signature appropriately. And then we extendg(t) in a neighborhoods
of t = t−1, t = t2, t = t−2, · · · in turn. Finally we obtaing(t) ∈C∞(R) satisfying
g(t)2 = f (t).

EXAMPLE1. Let a≥ 2, and put

f (t) =

{
e−1/t(1−sin(1/t))+e−a/t ( t > 0),
0 ( t ≤ 0).

Then f (t) > 0 ( t > 0) and
√

f (t) /∈C2(R). Indeed, puttingtn = (2nπ + π/2)−1

(n∈ N), we have

f (tn) = e−a/tn, f ′(tn) = at−2
n e−a/tn,

f ′′(tn) = t−4
n e−1/tn +a2t−4

n e−a/tn −2at−3
n e−a/tn.

So we have

d2

dt2
√

f (t)|t=tn = f ′′(tn) f (tn)−1/2/2− f ′(tn)2 f (tn)−3/2/4

= t−4
n e(a/2−1)/tn +o(1) asn→ ∞.

This gives limn→∞(d2/dt2)
√

f (t)|t=tn = ∞. One can also find a similar example
in the following paper:

G. Glaeser, Racine carrée d’une fonction diff́erentiable, Ann. Inst. Fourier,
Grenoble13 (1963), 203–210.
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