s thereg(t) € C*(R) satisfyingf (t) = g(t)?
whenf(t) € C*(R) andf(t) > 0?
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We shall prove the following

Theorem 1. Let f(t) € C*(R) satisfy fit) > 0 (t € R), and assume that
Z ={t € R; f(t) = 0} has no accumulating point. Moreover, we assume the
following condition:

(A) Iftge Zis a zero of f of infinite order, then there aredNN andn > 0 such
that for anye > O there is G > 0 satisfying

1
/ (1— 0)N"Lf(to+ Bt)dB < Cef(to+ )¢
0
fort € [to—n,to+n].
Then there is §) € C*(R) satisfying ft) = g(t)? (t € R).

Remark If for everytg € Z there isn > 0 such thatf (t) N\, on [to — n,to] and
f(t)  on [to,to+ n], then the condition (A) is satisfied. In particular, if the set
{t e R; f’(t) = 0} has no accumulating point, then the condition (A) is satisfied.

To prove the theorem we need the following two lemmas.

Lemma 2. Assume that (t) € Z(R), i.e., f(t) and its derivatives are all
bounded, and that for ang > O there is G > 0 satisfying

(1) 1f(5)| <Ce|f(t)|} 8 if —o<s<t<on,
Then, for any ke Z (:=NU{0}) ande > Othere is G ¢ > 0 such that

[FR0)] <Ceel fOFF (teR).



Proof. For fixedN € N andt € R we have

N-1 SN
(N-1) > f(N)
o g 6,

where 0< 6 = 6\(t,s) < 1. Now assume thdft(t) # 0. We have

_ A\NGN
1) = £ — 10— O + D H 01 e oY)
— il - Lt e+

ijl

(N—1)!

ft+s) =f(t)+sf(t)+

(=N FO)NDNFN-Y gy (j=1,2,- ,N-1),

where(0 <)8; = On(t,—j| f(t)[¥N)(< 1). Note that
[ ()] < [F 1L+ NCN(F) /N +Col f ()72 < C ol f(1)7° for >0,

whereCy(f) = sup g | f(N)(s)|, Cs is the constant in (1) and tii&, 5 are positive
constants. Put

A= ((—1)k+1jk) 11,2, N—1-

—

Since deA # 0, there is the invers& ™ = (Byjk) jj12.. n_1- Therefore, we
k—

have, with some positive constaidg ; s,

N-1

[FOPNED )/ = Z BN, j kk(t),

1F0(t)] < Cyjslft )|1 - N for 3 >0
(J<jJ<N-1). O

Lemma 3. Assume that (t) € Z(R), f(t)=0(t <0)and f(t) >0(t > 0).
Moreover, we assume that there isd\N such that for any > O there is G > 0
satisfying
1
) / (1—0N-Lf()dB <C.F (1)1 2 (0<t<1).
0

Then, for any ke Z, ande > O there is G . > 0 such that

3) [FO0)] <Cef° (t<1).

Moreover, for ne N f(t)1/" belongs to C(R).
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Remark. If for any & > 0 there isC; > 0 such thatf (s) < C.f(t)1 ¢ (0 < s<
t < 1), then for anyN € N (2) is valid.

Proof. Put
F(t):/01(1—G)N_lf(et)de-tN/(N—l)!.
Then we havé (N (t) = f(t). Indeed, we have
F'(t) :/019(1—9)N1f’(9t)d9-tN/(N—1)!

1
+/ (1—-0)N"1f(6t)do - NtNL/(N—1)!
0
1

= {ioa-oMtr(enigzs- [ (a-oMN - (N-1o-o" Y

x f(6t) de}tN—l/(N —1+ /01(1— N1t (ot)do-NtN1/(N—1)!

1

/ (1— 6)N2f(6t)de tN"L/(N—2)! (N> 2),

= 0
f) (N=1),

which proves the assertion. Modifyiig(t) fort > 1, we may assume thift) €

A(R) andF(t) . Since 0< F(s) < F(t) (s< ), it follows from Lemma 2 and

(2) that for anyk € Z, ande > 0 there are positive constar@g; andC, , such
that ’

[FO)] < CreF ()52 <Cuef()7° (t<),

which proves the first part of the lemma. Rytt) = f(t)/" forne N. Let5 > 0.
Then we can show by induction that there @e> 0 (k € Z..) satisfying

4) ¥ <CF Y (keZ,,0<t<1).

Indeed, (4) withkk =0 is valid. Suppose that (4) holds o ¢. From the identity
ng,(t)gn(t)"t = f/(t), we have

12!
ng,(fﬂ) (O)gn®™L = FED (1) —n agslorﬁl) (t>gr(10‘2) (t)-- gglan)(t),

la|=¢, ar<?

wherea = (a1, -+ ,0n) € (Z+)"and|a| = a1+ - - - + an. This, together with (3)
and (4) fork </, gives

gb O] < n @) TFYNC g s ) HDO
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4 _
+n Y —Cy1Cay---Coy F(1)1 D)
la|=¢,a1<¢ ™"

< Ca fOYM DS (o<t <),

which proves (4). Note that Iim+ogﬁk) (t) =0 (ke Z;). Applying the mean
value theorem, we can prove inductively(t) € C*(R). O

Now we can prove Theorem 1. We can assume without loss of generality that
Z={to,ty1,tup,---} and ---<to<t 1<0<tp<ti<ty<---.

If to is a zero off of infinite order, then by Lemma 3 we can choagé) > 0
nearto so thatg(t) is in C® andg(t)? = f(t). In the casey is a zero of order
(m=1,2,---), we can also construgtt) > 0 neaty. If to is a zero of orderdh— 2
(m=12,--.), then we can construg(t) nearty so thatg(t) < 0 fort € (t_1,to)
andg(t) > 0 fort € (tp,t1). Next we extendy(t) in a neighborhood of = t,
choosing its signature appropriately. And then we exgggin a neighborhoods
oft=t_1,t =1ty t=t_», --- inturn. Finally we obtairg(t) € C*(R) satisfying
g(t)? = f(t).

ExavpLel. Leta> 2, and put

) — e Y(1—sin(1/t)) +e ¥ (t>0),
t)= 0 (t<0).

Thenf(t) > 0 (t > 0) and,/f(t) ¢ C?(R). Indeed, puttind, = (2n7t+ 11/2)~*
(n € N), we have

f(tn) =€ ¥ f/(tn) = at, % /™,
£ (ty) =t e Y 4 g2t 4e ¥/t — 2atSe /M,

So we have

g_tzm't—tn = (tn) F(tn) "¥/2/2— 1 (tn)?f (ta) ~*/?/4

=t 4e@2-D/t 4 0(1) ash— oo.

This gives lim, .« (d?/dt?),/f(t)|t—, = «. One can also find a similar example
in the following paper:

G. Glaeser, Racine ca&® d’'une fonction diffrentiable, Ann. Inst. Fourier,
Grenoblel3(1963), 203-210.



