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In this note we shall give some facts and remarks concerning “semi-algebraic
functions” which we need in another paper. We think that the results given here
are all well-known, but we could not find any literature in which the main results
here ( Theorems 5, 10 and 11 below) are given and proved.

Definition 1. Let Sbe a subset dR". We say thaSis semi-algebraic ( or a
semi-algebraic set (iR")) if there is a finite family{A; }1<j<m, 1<k<r; Of subsets
of R" such that eaclA; i is defined by a real polynomial equation or inequality
and

Noting that

G(ﬁ%k) = ﬁ H (GAj,kj>,

j=1 k=1 k=1 km=1 j=1
we have the following

Lemma 2. Let § and $ be semi-algebraic sets iR". Then $(=R"\ §),
SSUS and §NS, are semi-algebraic. Moreover, if T is a semi-algebraic set in
R™M then § x T is semi-algebraic.

The following theorem is called the Tarski-Seidenberg theorem (eee,
§A.2 of [H]).

Theorem 3(Tarski-Seidenberg)Let S be a semi-algebraic set®{"™. Then
S:={xeR" (x,y) € S for some ¥ R™}

is semi-algebraic.



Corollary. LetS and T be semi-algebraic setsRA™™ andR™, respectively.
Then the set R
S={xeR"; (x,y) € Sforany yc T}

is semi-algebraic.
Proof. Since
S(=R"\ S = {xe R"; there isy € T satisfying(x,y) € S}
= {x € R"; there isy € R™ satisfying(x,y) € SN(R"x T)},
Theorem 3 and Lemma 2 prove the corollary. Il

Lemma 4. If S is a semi-algebraic set iR", then the closur& of S and the
interior S of S are semi-algebraic.

Remark.If S= {x € R; x*(x—1) > 0}, thenS= (1,00) andS+# {x € ; x>(x—
1) >0} = SU{0}.

Proof. Put
D:={(x¢&y) e R*L >0 yeSxeR"and|x—y|? < €},
E :={(x,€) € R"x (0,»); there isy € Ssatisfying|x—y|* < &}
ThenD is semi-algebraic and
E = {(x,£) € R™; there isy € Ssatisfying(x, £,y) € D}.
From Theorem 3E is semi-algebraic. Sinc8= {x € R"; (x,&) € E for any
€ >0}, andS= (R"\ S)C, SandSare semi-algebraic. O

Theorem 5. Let P(X) be a polynomial of X= (Xq,---,X,), and put A= {X €
R"; P(X) # 0}. Then the number of the connected components of A is finite and
each component is semi-algebraic.

Proof. We may assume that the coefficientdgK) are real, replacin@(X)
by Pre(X)? + PAm(X)? if necessary, wherB(X) = Pre(X) + iPm(X) andPre(X)
andRny (X) are real polynomials. Let us prove the theorem by induction.oif
n =1, then the theorem is trivial. Léte N(={1,2,---}), and suppose that the
theorem is valid when < L. Letn=L + 1. We can write

P(X) = Py(X)™ - Ps(X)™,
where theP;j(X) are irreducible polynomials and mutually prime. Put
Q(X) = Pr(X) - Rs(X),
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and denote byR%(X) the principal part ( the terms of highest degree)PoX).

We may assume th@°(0,--- ,0,1) # 0, using linear transformation if necessary.
Let D(X’) be the discriminant of the equatigp(X’, X,) = 0 in X,, whereX’ =
(X1, -+ ,Xn—1). ThenD(X’) # 0 and, by the assumption of induction, there are
N € N and semi-algebraic sefs; in R"1 (1< j <N) such that theA; are
mutually disjoint and coincide with the connected components of théXet
R"1; D(X’) # 0}. For eachj € Nwith 1 < j < N we can write

|
QX)=Q |_|xn A(X
A(X') < Aa(X') <o < Arpy(X), IMAX) #0(r(j)+1<k<I)

for X' € Aj, wherel = deg, Q(X) andr(j) € N, since the equatio@(X’,X,) =0
in X, has only simple roots foX’ € Aj. Put

Ajk:={X €A xR; there arédy,--- ,A;(j) € RandA,(j);1,--A €C

suchthaty <Az <.+ <Ay, IMAL A0 (p=r(j)+1,---,1),
|
Q(X',t) =Q%0,---,0,1) [] (t —Ay) as a polynomial of
u=1
andA_1 < Xp < Acif2 <k<I, Xy <A1if k=1,
andXn > Aj) if k=r(j) +1} (k=12,2,---r(j)+12).

Then theA;  are semi-algebraic and

r(j)+
AN(Aj xR) = U AJk

By Lemmas 2 and 8Bk = AjkNA is semi-algebraic. Assume that there are
disjoint open subsets; andC; of Bj k satisfyingB; x = C; UC; andC, N A,  # 0.
SinceA, k is connectedC; C dAj kN A, wheredB denotes the boundary &fin

R" for a subseB of R". So we have&C, = 0. This implies thaB; i are connected.

Since(A; x R)nA =)™ B, we have
N r(j)+1

A=) J B
=1 k=1

Put
N={(],K)eNxN; 1<j<N, 1<k<r(j)+1}.



For(j,k),(j’,K') e Awe saythatj,k) ~ (j’,K) if there arev € Nand( ., ky) € A
(1< p<v)satisfyingB;j, k, NBj,, 1k, # 0 (0< p < v), where(jo,ko) = (j,K)
and(jys1,kvs1) = (j',K). For(j,k) € A we put

A(Jk) = U Bj’,k"
(1" K)~(j k)

ThenA; ) is a connected componentdfind semi-algebraic. Moreover, we have
A= UjenAj K Which proves the theorem. ]

Definition 6. Let f(X) be a real-valued function defined &I'. We say
that f(X) is semi-algebraic ( or a semi-algebraic function) if the graphf of
(={(X,y) € R y= f(X)}) is a semi-algebraic set.

Lemma 7. f(X) is semi-algebraic if and only if A {(X,y) € R y <
f(X)} is a semi-algebraic set.

Proof. Assume thatf (X) is semi-algebraic. TheB = {(X,y,A) € R"*?;
A = f(X) andy < A} is a semi-algebraic set. Therefore, Theorem 3 implies that
Ais semi-algebraic. Next assume thais semi-algebraic. The@ = {(X,y,A) €
R™1; A < f(X) andy < A} is semi-algebraic. Therefore, Theorem 3 implies that
D = {(X,y) € R™1L y < f(X)} is semi-algebraic. Thua\D = {(X,y) € R";
y = f(X)} is semi-algebraic. O

Definition 8. (i) Let f(X) be a complex-valued function defined BA. We
say thatf (X) is semi-algebraic ( or a semi-algebraic function) if fR¥) and
Im f(X) are semi-algebraic.

(i) Let XO € R", and letf (X) be a complex-valued function defined in a neigh-
borhood ofX°. We say thatf (X) is semi-algebraic aX° if there isr > 0 such
that the setg(X,y) € R™1; |X — X0 < r andy = Ref(X)} and{(X,y) € R";

X — X9 < r andy = Im f(X)} are semi-algebraic.

(iii) Let U be an open subset &", and letf (X) be a complex-valued function
defined inU. We say thatf (X) is semi-algebraic itV if f(X) is semi-algebraic
at everyX% e U.

Lemma 9. Let X° € R", and let f(X) and gX) be semi-algebraic¢ resp.
semi-algebraic at X).

(i) af(X)+Bg(X)and f(X)g(X) are semi-algebrai¢ resp. semi-algebraic
at X%), wherea, 8 € C.

(i) If g(X) # 0for X € R" (resp. dX) # 0in a neighborhood of &), then
f(X)/g(X) is semi-algebrai¢ resp. semi-algebraic at .

(i) 1f g(X) > 0for X € R" (resp. dX) > 0in a neighborhood of R), then
g(X)¥' (> 0)is semi-algebrai¢ resp. semi-algebraic at%, where le N.
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Proof. Let us prove the first part of the assertion (i) in the case wiéxg
andg(X) are semi-algebraic &°. The other assertions can be proved by the same
argument. We may assume thgiX) andg(X) are real-valued. By assumption
there isr > 0 such thatA = {(X,A) € R X — X% <r andA = f(X)} and
B={(X,u) e R™?L; X — X% < randu = g(X)} are semi-algebraic sets. Since

Ci={(X,A, 1y) € R™3 X = X% <1, A = £(X), = g(X)
andy=aA +Bu}

is semi-algebraic, Theorem 3 implies thatt (X) 4 Bg(X) is semi-algebraic ax°.
O

Theorem 10. Let X° € R", and assume that(K) is in C* and semi-algebraic
(resp. semi-algebraic at%. Then there is a irreducible polynomia(2X) (% 0)
of (zX) = (2, Xg,---,%Xn) satisfying Rf(X),X) =0 (resp. Rf(X),X)=0ina
neighborhood of X).

Proof. Let us prove the theorem in the case whéf¥) is semi-algebraic at
X0. We may assume thdt(X) is real-valued. By assumption thereris- 0 such
that f (X) € C*(B;(XY)) and the seB= {(X,y) € B;(X%) x R; y = f(X)} is semi-
algebraic, wher&, (X%) = {X € R™; |X — X°| < r}. First consider the case where
n=1. LetF(z X) be the product of all polynomials «(z X), except polynomials
depending only orX, that appear in the definition of the semi-algebraicSet
Definition 1 asA| x = {(z X) € R"1; Fj «(z,X) = 0 (resp.> 0)}. Then we have
F(f(X),X)=0inB;(X°) sinceSis a graph off (X). Write

F(zX)=F(zX)™...Fg(z,X)™,
where theFj(z X) are irreducible polynomials and mutually prime. We put
G(zX) =Fi(z,X)---Fs(z,X)

and denote byD(X) the discriminant of the equatioB(z,X) = 0 in z. Then
D(X) #0. Let X! € B;(XY), and assume thdd(X') # 0. Since the roots of
G(z,X1) = 0 in z are all simple,f(X) is analytic atX!, and there ig(X') € N
with 1 < j(X%) < ssuch thaf; 1) (f(X),X) = 0 in a neighborhood ok*. Next
assume thad(X1) = 0. Then there i$ > 0 such thaD(X) #0if 0 < [X — X!| <
5. Moreover,f(X) is equal to a convergent Puiseux seriesf 8-(X — X1) < §,
respectively, modifying if necessary. Sincé(X) is inC®, the Puiseux series are
Taylor series and, therefor&(X) is analytic atX™. So f (X) is analytic inB, (X°)
and there i§ € N with 1 < j < ssuch thatFj(f(X),X) = 0 in B;(X?). Next let
us consider the case whare> 2. Similarly, there is a polynomidt(z X) ( # 0)
such thafF (f(X),X) = 0in B;(X°). Write

F(va) = Fl(z7x)ml T FS(Z7X)mS7
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where theF;(z X) are irreducible polynomials and mutually prime. We put
G(Z,X) = F]_(Z,X) Tt FS(va)

and denote by (X) the discriminant of the equatio@(z,X) = 0 in z. We have
D(X) # 0. We may assume th&@°(0,---,0,1) # 0, whereD®(X) denotes the
principal part ofD(X), using linear transformation if necessary. DfX°) #
0, then f(X) is analytic atX® and we can choos¢ € N with 1 < j < s so
that Fj(f(X),X) = 0 in a neighborhood oK®. Now assume thab(X) = 0.
Choosex? € R"1 so that|XV — X%| < r, whereX® = (X?,--- ,X9) andX? =
(X9,.-- /X9 ). SinceD(XY,%,) # 0 in X,, applying the same argument for the
casen = 1, we can see that(X¥,X,) is analytic inX, if (X¥,%,) € B;(X?)
and that there i§ € N with 1 < j < s satisfying Fj(f (XY, Xy),X¥,X,) = 0 if
(XY Xn) € Br(X%). On the other hand, for each connected compoignof
the set{X € R"; D(X) # 0} there isj = j(Ax) € N with 1 < j < s satisfying
Fi(f(X),X) =0 in Acn B (X%). Therefore, there ar& > 0 andj € N such that
1< j <sandFj(f(X),X)=0if X € B;(X% and|X' - X?| < 4. O

Theorem 11. Let X° € R", and assume that(X) is a continuous function
defined orR" ( resp. near ¥). Moreover, we assume that there is a polynomial
P(z,X) (# 0) satisfying R f(X),X) =0 (resp. Rf(X),X) =0in a neighborhood
of X%). Then fX) is semi-algebraic resp. semi-algebraic at .

Proof. Let us prove the theorem in the case whe(¥) is defined inB; (X°).
We may assume thdt(X) is real-valued and tha®(z A) is a real polynomial.
Write

P(z,X) = P(z, X)™ .- Py(z,X)"™,

where theP;(z, X) are irreducible and mutually prime. We put
Q(zX) =Pi(zX)---Ps(z, X)

and denote byp(X) the discriminant of the equatid@(z, X) = 0 in z. Then we
haveD(X) # 0. PutA:= {X € R"; D(X) # 0}. It follows from Theorem 5 that
there are a finite number of semi-algebraic gats - -, Ay in R" such that the\;
are the disjoint connected component@\@ndA = U’j\lzlAj. For eachj € N with
1< j<Nthereare(j) e Nwith 1 <r(j) <m, a polynomialc(X) andAx(X)
defined inA; (1 < k < m) such that(X) # 0 and

Az X) =c<x>kﬁ (2 M)
=1
< c e

A1(X) < A2(X) <Ar(jH(X),  IMAX) #£0(r(j)+1<k<m)



for X € Aj, wherem=deg,Q(z X). Let j € N satisfy 1< j < N andA;j N B (X°) #
0. Then there exists uniquekyj) € N satisfying 1< k(j) <r(j) andAy)(X) =
f(X) in AjnN B (XY). Put

Ej:={(X,y) € Aj xR; X € B;(X°) and there ara € R andAy,--- ,Am € C
such thaQ(z X) = akﬁl(z—)\k), AL <o <Ay
ImAg # 0 ( r(j)-i—lg_kg m) andy = Ay }-
ThenE;j is semi-algebraic and
Ej = {(X,y) € Aj x R; X € B;(X% andy = f(X)}.

Put
Ej:={(X,y) € Aj xR; X € B;(X®) andy = f(X)}.

SinceE;j = EjNB(X%) x R, Ej is semi-algebraic. S& = Uj: g, (x0)20Ej IS
semi-algebraic. Note thaf}! ; Aj = R" and thafA; N B, (X°) = 0 if Aj "B, (X?) =
0. Then we have

E={(X,y) e B(X%) xR; y= f(X)}.

References

[H] L. Hormander, The Analysis of Linear Partial Differential Operators II,
Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.



