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Let the conditions (L) and (L)o be given in [3]. In [3] we asserted the
following lemma.

Lemma 1. The condition (L)y is satisfied if the condition (L) is satisfied.

In this note we shall prove Lemma 1. Let U be an open subset of R",
and let a(t,€) be a real analytic function defined in [0, §y] x U, where § > 0.
Then there is a compact complex neighborhood €, of [0, dy] such that a(t, §)
is regarded as an analytic function defined in €, for &€ € U. We assume that
a(t,&) > 0 for (¢,€) € [0,00] x U. Let b(t, &) be real analytic in [0, 8] x U.
Let Ry(&) : U 3 £ — Ry(§) € P(C) satisty #Ry(€) < Ny for any € € U,
where Ny € N and #A denotes the number of the elements of a set A. We
choose ¢ € (0,1] so that [—d,d0 + ] C Q,. Let ¢ € (0,1], and let Ry 5.(€)
( € C) be a set-valued function defined for £ € U satisfying the following:

(1) supgery #Ras.c(§) < 00,

(i) If € e U, a(t,§) Z0int, A € Qu, a(N,&) =0, |ImA| < ¢ and Re €
[—9, 0p+0], then there is s € R,.(§) satisfying | Im A| > ¢|(Re A) 4+ —s].

Lemma 1 easily follows from Lemma 2 below and the compactness argument.

Lemma 2. There are positive constants 6, and A = A(a,d,c) such that

(Lase min{seé{j}&g ot sl 1}1b(t. )] < ACV/a(1,€)
fO’f’ (t,f) S [0751] xU



if, with C > 1,

L)y min{ min |t—s|,1}|b(t,§)|SC\/a(t,g) for (£,€) € [0,8,] x U,

s€Ry(€)
where mingeg [t — s| = 1.

Proof. Assume that (L)y holds, and put

do
KO = [ attg)

If K(§) = 0, then a(t,€) = b(t,€) = 0 in (¢,€) and the lemma becomes
trivial. Assume that x(&) #Z 0. Let €2 € U. We apply Hironaka’s resolution
theorem to x(€) ( see [1]). Then there are an open neighborhood U(£°) of
€%, a real analytic manifold U(£°), a proper analytic mapping ¢ = o(£0):
U(E%) 5 @ — (@) (= o(@;: %)) € U(&Y) satisfying the following:

(i) ¢: UEY\ A = U(€°) \ A is an isomorphism, where A = {¢ € U;
k(€) =0} and A = o 1(A).

(i) For each p € U(£°) there are local analytic coordinates X (= X?) =
(X1, -, X)) (= (XV, .-+, XP)) centered at p, r(p) € Z, withr(p) <n,
se(p) € N (1 < k < r(p)), a neighborhood U(£%;p) of p and a real
analytic function e(X) (= e(X?;p)) in V(£ p) such that e(X) > 0 for
X e V(€% p) and

7(p)
k(@) = e(X (@) [] Xe(@)**® (@ e UEsp),
where V(€% p) = {X(a); @ € U(%p)} and [[}2) -+ = Lif r(p) = 0.

Here V (€°; p) is a neighborhood of 0 in R™. Define ¢ (= 3(¢°, p)) : V(ﬁo;p) —
U(") by ¢(X(a)) (= ¢(XP(0);£%,p)) = o(@) (= ¢(;¢")) for u € U(E" p).
Let Up(¢°) be a compact neighborhood of £ in U(£°), and put Up(¢?) =
0 1 (Uu(£%)). Fix p € Up(£°), and put

a(p) = (s1(p), =+ Srp (), 0, -+ ,0) € (Z4)".

From (L)y it is easy to see that there is a real analytic function d(t, X;p)
defined in [0, 5] x V(€% p) satisfying

b(t, p(X; €%, p))? = d(t, X;p)X2*@  for (¢, X) € [0,80] x V(E%p).
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From (2.6) and (2.7) of [3] we can also write

a(t, 3(X; €% p)) = c(t, X;p) f(t, X; p) X2,

F(t, X5p) = t™P 4 ay (X; p)t™ P - ) (X5 p)
for (t, X) € [0,8(p)] x V(p), where 0 < §(p) < min{dy, 1}, V(p) is a compact
neighborhood of 0 in V(€% p), m(p) € Z, c(t, X; p) is a real analytic function
defined in [0, d(p)] x V(p) satistying c(¢, X;p) > 0 and the a;(X;p) are real
analytic functions defined in V'(p). By the Weierstrass division theorem there
are a polynomial g(t, X;p) of t with real analytic coefficients of X defined

in V(p), and a real analytic function h(t, X;p) defined in [0,5(p)] x V(p)
satisfying deg, g(t, X; p) < m(p) and

d(t, X;p) = h(t, X;p)f(t, X;p) + 9(t, X;p) 10 [0,6(p)] x V(p),
modifying &(p) and V(p) if necessary. Fix X € V(p) with X*® £ 0, and
put &€ = §(X; &% p). Then (L)y implies that

1 . . i 21 X < 2 X
1) min min_ |t = s 1}lg(t. X:p)| < C*Co(p) (. X:)

for t € [0,4(p)], where

Ci(p) = max _ (c(s,Y;p) + |h(s,Y;p)]) + 1.
(5,Y)€[0,6(p)]|xV(p)

Let us prove that there is a positive constant A(p,d,c) independent of X
such that

@) min{ wmin e s 1 g(t X5p)] < Ap,6,¢)C2Ci(p) £ (1, X3 )
sena,&,c(g)

for t € [0,0(p)]. If t € [0,0(p)] N Ras.c(€), then (2) holds. So we may assume
that ¢t € [0,(p)] \ Ras.(§) and that g(s, X;p) £ 0in s. If R,5.(£) = 0, then
we have a(s,§) #Z 0 in s and

a(X\, &) #0 ifAeQ,, Red e [—0,00+ 6] and [ImA| <6,
since k(§) # 0. This implies that
Ft,X5p) > 0™Pif Rape(€) = 0.
Therefore, (2) is valid if R, 5.(€) = ) and

Alp,8,¢) > 6 m® max _ |g(s,Y;p)|.
(5,Y)€[0,6(p)] xV (p)
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Thus we may assume that R,s5.(§) # 0. Then there is \g € Ry 5.(€) satis-
fying minyer, ;.¢) [t — Al = [t — Ag|. Now let us apply the argument in the
proof of Lemma 2.1 of [2]. First consider the case where ¢t > §(p)/2. We put

so = max{0,t — |t — Ao},

and divide the interval (sg, ¢] into (m(p)+ Ny ) subintervals with equal length.
Write

g(s, X;p) = d(p) [ [ (s — 1),

j=1

where fi < m(p) and p; € C. Then there is k € N such that k < m(p) + Ny
and

(s0+ (k — 1)p, so + kpl N ({Repy; 1< 5 < gy U{Re X A€ Ry(€)}) =,
where p = (t — s0)/(m(p) + Ny). Put
I =[so+ (k—2/3)p,s0+ (k—1/3)p).
(i) Let £ € I. Then we have
3 i in |t—\,1} > p/3,
(3) mm{Aer;llen@l 1} = p/

(4)  min{ min |f— A, 1} < min{|f — Xo|, 1} < 2min{[t — \ol, 1},
AeRa,&,c(g)

since p < land 0 <t —sg < |t — Ag|. Since p = |t — Xo|/(m(p) + Ny) if
t > |t — Xo|, and p = t/(m(p) + Ny) otherwise, we have

5) p > 5(p) min|t = Aol, 1}/(2(m(p) + No)).
This, together with (3) and (4), gives
(6) min{ min |t — A, 1} < 4(m(p) + Ny)p/d(p)
)‘eRa,é,c(E)
< 12(m(p) + Ny) min{ min | — |, 1}/3(p).
ARy
From (1) and (6) we have
7) min{_pin _ 7= A% 1}lg(7 X:p)

Ra,&,c(

< 144(m(p) + Nu)2C*Ci(p) f (. X;p) /6 (p)*.



(ii) (5) implies that

mm{ min |t — Al 1} = min{|t — Ao|, 1} < 2(m(p) + Nu)p/d(p).

a6c

On the other hand, we have

min{ min [f—A,1} > p/3 fort eI,
{AGRa,S,c(E) | I } B p/

since [t — N > |t = A — |t —# > |t — Xo| = |t — ] for A € Ru5.(€), and
it —t|=t—t<t—sy—p/3<|t— | —p/3forte I, This, together with
(5), gives

8 t—A1 t— Nol,1
(®) min{_min [t .1} = minit - .1}

< 2(m(p) + Ny)o/0(p) < 6(m(p) + Ny) min{_min |~ A.1}/a(p)

for t € I. It is obvious that |t — Re ;| > p/3 and

|t = Repy| < |t —Repy| if (t+1)/2 < Repy,

|t — Rep;| <2t —Rep,| if Rep; <2 —t,

0 <t—Rep; <2(t—1) <2(m(p) + Ny —1/3)p
if 26t —t <Rep; < (t+1)/2,

for t € I and 1 < j < ji. Noting that |t — Re ;| > p/3, we have

|t — Rep | < 6(m(p) + Ny)|t —Rep;| forteland1<j<p,
which gives
(9) l9(t, X;p)| < {6(m(p) + Nu)}" P~ g(t, X;p)| for i€ 1.

We write
m(p)

f(s, X5p) = H

.
—_

We may assume that f(s, X;p) is defined in R x V(p), Re Aj € [=6(p),0(p)]
for 1 < j < m(p), modifying V(p) if necessary. Let 1 < j7 < m(p). If

| Im A;| > §, then we have

(10) £ = X" < 40(p)* + | Tm Ay * < (1 +(2/0)%)[ Tm Ag]* < (3/0)*| Tm Ay ?



for t € I. If [Tm \;| < § and Re \; < —§, then we have
(11) [E=X? < 48(p)*+0° < (1+(2/8)*)|t=N;|* < (3/8)*[t—=N\;|* fort e 1.

Let |Im\;| < § and Re\; > —d. Then there is s; € Rqs.(§) satistying
| Im \;| > ¢|(Re Aj)+ — s;|. Therefore, we have

(12) [t = XAl = (cft = (Re Aj) 4| + [Im Ay]) /2
> (|t = 5] = c|(Re Xj) 4 — 5] + [Im X;]) /2
> clt —s5]/2 > |t — Nol/2 > |t — \j|/4 if [E— M| < 2t — Aol
(13) =N = =Nl =1t =t 2 [E =N = [t = so| = [T = Ny]/2
if [£— N\ > 2t — Aol
It follows from (10) — (13) that
(14) F(t, X;p) > (min{d/3,¢/4})" P f (£, X;p) forfel.
(iii) From (7) — (9) and (14) we have
i i t— A2 1 g(t, X;
mm{keg}&s)l %, 1}Hg(t, X5 p)|
< 4-6""P (m(p) + Ny)** P (min{d/3,c/4}) " Ps(p) ™"
x C*Ci(p) f(t, X3 p)-

So (2) holds if Ry s5.(§) # 0, t € [0(p)/2,0(p)] and
Alp,0,¢) 2 4- 6P (m(p) + Ny)**™® (min{s/3, ¢/4}) "5 (p) ",
Assume that ¢ < 0(p)/2. Then, putting
so = min{d(p),t + [t — Ao|}

and dividing the interval [¢,0¢) into (m(p) + Ny) subintervals with equal
length we repeat the arguments above to prove (2). (2) yields

min{ _ min : [t — s|?, 1}b(t, €)|* < A'(p, 6, c)C*Cy(p)alt, &)

a,d,c

for t € [0,6(p)] and & = G(X, €%, p) with X € ‘7(17),

Al(p,d.c) = A(p.d,c)  max (s, Y;p)| (14 |h(s,Yip)]).
(s:V)€0.6())xV ()
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Put U(p) = (X?)"1(V(p)) (C U(€% p)). Since U is compact, there are N € N
and & € U (1 < j < N) such that U C Ujvzl (ofo(ﬁj). Here A denotes the
interior of A ( € R"™). Since Uy(&?) is compact, there are P; € N and
pr e Up(€9) (1 < k < Pj) such that Uy(&9) C UszllN](p”“) Therefore,
putting

A(a, 8, c) = max{A'(p"*, 0, 0)1/2Cl(pj’k)1/2; 1<j<Nandl<k<P},

we complete the proof of Lemma 2. O
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