Remarks on the conditions (L) and $(L)_0$ in the paper "On the Cauchy problem for hyperbolic operators with double characteristics whose principal parts have time dependent coefficients"

Seiichiro Wakabayashi

Let the conditions (L) and (L)₀ be given in [3]. In [3] we asserted the following lemma.

Lemma 1. The condition $(L)_0$ is satisfied if the condition (L) is satisfied.

In this note we shall prove Lemma 1. Let U be an open subset of \mathbf{R}^n , and let $a(t,\xi)$ be a real analytic function defined in $[0,\delta_0] \times \overline{U}$, where $\delta_0 > 0$. Then there is a compact complex neighborhood Ω_a of $[0,\delta_0]$ such that $a(t,\xi)$ is regarded as an analytic function defined in Ω_a for $\xi \in \overline{U}$. We assume that $a(t,\xi) \geq 0$ for $(t,\xi) \in [0,\delta_0] \times \overline{U}$. Let $b(t,\xi)$ be real analytic in $[0,\delta_0] \times \overline{U}$. Let $\mathcal{R}_U(\xi) : U \ni \xi \mapsto \mathcal{R}_U(\xi) \in \mathcal{P}(\mathbf{C})$ satisfy $\#\mathcal{R}_U(\xi) \leq N_U$ for any $\xi \in U$, where $N_U \in \mathbf{N}$ and #A denotes the number of the elements of a set A. We choose $\delta \in (0,1]$ so that $[-\delta,\delta_0+\delta] \subset \Omega_a$. Let $c \in (0,1]$, and let $\mathcal{R}_{a,\delta,c}(\xi)$ ($\subset \mathbf{C}$) be a set-valued function defined for $\xi \in U$ satisfying the following:

- (i) $\sup_{\xi \in U} \# \mathcal{R}_{a,\delta,c}(\xi) < \infty$.
- (ii) If $\xi \in U$, $a(t,\xi) \not\equiv 0$ in t, $\lambda \in \Omega_a$, $a(\lambda,\xi) = 0$, $|\operatorname{Im} \lambda| \leq \delta$ and $\operatorname{Re} \lambda \in [-\delta, \delta_0 + \delta]$, then there is $s \in \mathcal{R}_{a,\delta,c}(\xi)$ satisfying $|\operatorname{Im} \lambda| \geq c|(\operatorname{Re} \lambda)_+ s|$.

Lemma 1 easily follows from Lemma 2 below and the compactness argument.

Lemma 2. There are positive constants δ_1 and $A \equiv A(a, \delta, c)$ such that

(L)_{a,\delta,c}
$$\min \left\{ \min_{s \in \mathcal{R}_{a,\delta,c}(\xi)} |t-s|, 1 \right\} |b(t,\xi)| \le AC\sqrt{a(t,\xi)}$$
$$for (t,\xi) \in [0,\delta_1] \times U$$

if, with $C \geq 1$,

$$(\mathbf{L})_U \quad \min \Bigl\{ \min_{s \in \mathcal{R}_U(\xi)} |t-s|, 1 \Bigr\} |b(t,\xi)| \leq C \sqrt{a(t,\xi)} \quad \textit{for } (t,\xi) \in [0,\delta_1] \times U,$$

where $\min_{s \in \emptyset} |t - s| = 1$.

Proof. Assume that $(L)_U$ holds, and put

$$\kappa(\xi) = \int_0^{\delta_0} a(t, \xi) \, dt.$$

If $\kappa(\xi) \equiv 0$, then $a(t,\xi) \equiv b(t,\xi) \equiv 0$ in (t,ξ) and the lemma becomes trivial. Assume that $\kappa(\xi) \not\equiv 0$. Let $\xi^0 \in \overline{U}$. We apply Hironaka's resolution theorem to $\kappa(\xi)$ (see [1]). Then there are an open neighborhood $U(\xi^0)$ of ξ^0 , a real analytic manifold $\widetilde{U}(\xi^0)$, a proper analytic mapping $\varphi \equiv \varphi(\xi^0)$: $\widetilde{U}(\xi^0) \ni \widetilde{u} \mapsto \varphi(\widetilde{u}) (\equiv \varphi(\widetilde{u}; \xi^0)) \in U(\xi^0)$ satisfying the following:

- (i) φ : $\widetilde{U}(\xi^0) \setminus \widetilde{A} \to U(\xi^0) \setminus A$ is an isomorphism, where $A = \{\xi \in \overline{U}; \kappa(\xi) = 0\}$ and $\widetilde{A} = \varphi^{-1}(A)$.
- (ii) For each $p \in \widetilde{U}(\xi^0)$ there are local analytic coordinates $X (\equiv X^p) = (X_1, \dots, X_n) (= (X_1^p, \dots, X_n^p))$ centered at $p, r(p) \in \mathbf{Z}_+$ with $r(p) \leq n$, $s_k(p) \in \mathbf{N}$ ($1 \leq k \leq r(p)$), a neighborhood $\widetilde{U}(\xi^0; p)$ of p and a real analytic function $e(X) (\equiv e(X^p; p))$ in $\widetilde{V}(\xi^0; p)$ such that e(X) > 0 for $X \in \widetilde{V}(\xi^0; p)$ and

$$\kappa(\varphi(\tilde{u})) = e(X(\tilde{u})) \prod_{k=1}^{r(p)} X_k(\tilde{u})^{2s_k(p)} \quad (\tilde{u} \in \widetilde{U}(\xi^0; p)),$$

where $\widetilde{V}(\xi^0; p) = \{X(\widetilde{u}); \ \widetilde{u} \in \widetilde{U}(\xi^0; p)\}$ and $\prod_{k=1}^{r(p)} \cdots = 1$ if r(p) = 0.

Here $\widetilde{V}(\xi^0; p)$ is a neighborhood of 0 in \mathbf{R}^n . Define $\widetilde{\varphi} (\equiv \widetilde{\varphi}(\xi^0, p)) : \widetilde{V}(\xi^0; p) \to U(\xi^0)$ by $\widetilde{\varphi}(X(\widetilde{u})) (\equiv \widetilde{\varphi}(X^p(\widetilde{u}); \xi^0, p)) = \varphi(\widetilde{u}) (\equiv \varphi(\widetilde{u}; \xi^0))$ for $\widetilde{u} \in \widetilde{U}(\xi^0; p)$. Let $U_0(\xi^0)$ be a compact neighborhood of ξ^0 in $U(\xi^0)$, and put $\widetilde{U}_0(\xi^0) = \varphi^{-1}(U_0(\xi^0))$. Fix $p \in \widetilde{U}_0(\xi^0)$, and put

$$\alpha(p) = (s_1(p), \dots, s_{r(p)}(p), 0, \dots, 0) \in (\mathbf{Z}_+)^n.$$

From $(L)_U$ it is easy to see that there is a real analytic function d(t, X; p) defined in $[0, \delta_0] \times \widetilde{V}(\xi^0; p)$ satisfying

$$|b(t, \tilde{\varphi}(X; \xi^0, p))|^2 = d(t, X; p) X^{2\alpha(p)} \quad \text{for } (t, X) \in [0, \delta_0] \times \widetilde{V}(\xi^0; p).$$

From (2.6) and (2.7) of [3] we can also write

$$a(t, \tilde{\varphi}(X; \xi^{0}, p)) = c(t, X; p) f(t, X; p) X^{2\alpha(p)},$$

$$f(t, X; p) = t^{m(p)} + a_{1}(X; p) t^{m(p)-1} + \dots + a_{m(p)}(X; p)$$

for $(t,X) \in [0,\delta(p)] \times \widetilde{V}(p)$, where $0 < \delta(p) \leq \min\{\delta_0,1\}$, $\widetilde{V}(p)$ is a compact neighborhood of 0 in $\widetilde{V}(\xi^0;p)$, $m(p) \in \mathbf{Z}_+$, c(t,X;p) is a real analytic function defined in $[0,\delta(p)] \times \widetilde{V}(p)$ satisfying c(t,X;p) > 0 and the $a_k(X;p)$ are real analytic functions defined in $\widetilde{V}(p)$. By the Weierstrass division theorem there are a polynomial g(t,X;p) of t with real analytic coefficients of X defined in $\widetilde{V}(p)$, and a real analytic function h(t,X;p) defined in $[0,\delta(p)] \times \widetilde{V}(p)$ satisfying $\deg_t g(t,X;p) < m(p)$ and

$$d(t, X; p) = h(t, X; p)f(t, X; p) + g(t, X; p) \quad \text{in } [0, \delta(p)] \times \widetilde{V}(p),$$

modifying $\delta(p)$ and $\widetilde{V}(p)$ if necessary. Fix $X \in \widetilde{V}(p)$ with $X^{\alpha(p)} \neq 0$, and put $\xi = \widetilde{\varphi}(X; \xi^0, p)$. Then $(L)_U$ implies that

(1)
$$\min \left\{ \min_{s \in \mathcal{R}_U(\xi)} |t - s|^2, 1 \right\} |g(t, X; p)| \le C^2 C_1(p) f(t, X; p)$$

for $t \in [0, \delta(p)]$, where

$$C_1(p) = \max_{(s,Y)\in[0,\delta(p)]\times \widetilde{V}(p)} (c(s,Y;p) + |h(s,Y;p)|) + 1.$$

Let us prove that there is a positive constant $A(p, \delta, c)$ independent of X such that

(2)
$$\min \left\{ \min_{s \in \mathcal{R}_{g,\delta,c}(\mathcal{E})} |t-s|^2, 1 \right\} |g(t,X;p)| \le A(p,\delta,c)C^2C_1(p)f(t,X;p)$$

for $t \in [0, \delta(p)]$. If $t \in [0, \delta(p)] \cap \mathcal{R}_{a,\delta,c}(\xi)$, then (2) holds. So we may assume that $t \in [0, \delta(p)] \setminus \mathcal{R}_{a,\delta,c}(\xi)$ and that $g(s, X; p) \not\equiv 0$ in s. If $\mathcal{R}_{a,\delta,c}(\xi) = \emptyset$, then we have $a(s, \xi) \not\equiv 0$ in s and

$$a(\lambda, \xi) \neq 0$$
 if $\lambda \in \Omega_a$, Re $\lambda \in [-\delta, \delta_0 + \delta]$ and $|\operatorname{Im} \lambda| \leq \delta$,

since $\kappa(\xi) \neq 0$. This implies that

$$f(t, X; p) \ge \delta^{m(p)}$$
 if $\mathcal{R}_{a,\delta,c}(\xi) = \emptyset$.

Therefore, (2) is valid if $\mathcal{R}_{a,\delta,c}(\xi) = \emptyset$ and

$$A(p,\delta,c) \geq \delta^{-m(p)} \max_{(s,Y) \in [0,\delta(p)] \times \widetilde{V}(p)} |g(s,Y;p)|.$$

Thus we may assume that $\mathcal{R}_{a,\delta,c}(\xi) \neq \emptyset$. Then there is $\lambda_0 \in \mathcal{R}_{a,\delta,c}(\xi)$ satisfying $\min_{\lambda \in \mathcal{R}_{a,\delta,c}(\xi)} |t - \lambda| = |t - \lambda_0|$. Now let us apply the argument in the proof of Lemma 2.1 of [2]. First consider the case where $t \geq \delta(p)/2$. We put

$$s_0 = \max\{0, t - |t - \lambda_0|\},\$$

and divide the interval $(s_0, t]$ into $(m(p) + N_U)$ subintervals with equal length. Write

$$g(s, X; p) = d(p) \prod_{j=1}^{\bar{\mu}} (s - \mu_j),$$

where $\bar{\mu} < m(p)$ and $\mu_j \in \mathbf{C}$. Then there is $\hat{k} \in \mathbf{N}$ such that $\hat{k} \leq m(p) + N_U$ and

$$(s_0 + (\hat{k} - 1)\rho, s_0 + \hat{k}\rho) \cap (\{\operatorname{Re}\mu_j; \ 1 \le j \le \bar{\mu}\} \cup \{\operatorname{Re}\lambda; \ \lambda \in \mathcal{R}_U(\xi)\}) = \emptyset,$$

where $\rho = (t - s_0)/(m(p) + N_U)$. Put

$$I = [s_0 + (\hat{k} - 2/3)\rho, s_0 + (\hat{k} - 1/3)\rho].$$

- (i) Let $\tilde{t} \in I$. Then we have
- (3) $\min\{\min_{\lambda \in \mathcal{R}_U(\xi)} |\tilde{t} \lambda|, 1\} \ge \rho/3,$

(4)
$$\min\{\min_{\lambda \in \mathcal{R}_{a,\delta,c}(\xi)} |\tilde{t} - \lambda|, 1\} \le \min\{|\tilde{t} - \lambda_0|, 1\} \le 2\min\{|t - \lambda_0|, 1\},$$

since $\rho \leq 1$ and $0 < t - s_0 \leq |t - \lambda_0|$. Since $\rho = |t - \lambda_0|/(m(p) + N_U)$ if $t \geq |t - \lambda_0|$, and $\rho = t/(m(p) + N_U)$ otherwise, we have

(5)
$$\rho \ge \delta(p) \min\{|t - \lambda_0|, 1\}/(2(m(p) + N_U)).$$

This, together with (3) and (4), gives

(6)
$$\min \{ \min_{\lambda \in \mathcal{R}_{a,\delta,c}(\xi)} |\tilde{t} - \lambda|, 1 \} \le 4(m(p) + N_U) \rho / \delta(p)$$

$$\le 12(m(p) + N_U) \min \{ \min_{\lambda \in \mathcal{R}_U} |\tilde{t} - \lambda|, 1 \} / \delta(p).$$

From (1) and (6) we have

(7)
$$\min \{ \min_{\lambda \in \mathcal{R}_{a,\delta,c}(\xi)} |\tilde{t} - \lambda|^2, 1 \} |g(\tilde{t}, X; p)|$$

$$\leq 144(m(p) + N_U)^2 C^2 C_1(p) f(\tilde{t}, X; p) / \delta(p)^2.$$

(ii) (5) implies that

$$\min\{\min_{\lambda \in \mathcal{R}_{a,\delta,c}(\xi)} |t - \lambda|, 1\} = \min\{|t - \lambda_0|, 1\} \le 2(m(p) + N_U)\rho/\delta(p).$$

On the other hand, we have

$$\min\{\min_{\lambda\in\mathcal{R}_{a,\delta,c}(\xi)}|\tilde{t}-\lambda|,1\}\geq\rho/3\quad\text{for }\tilde{t}\in I,$$

since $|\tilde{t} - \lambda| \ge |t - \lambda| - |t - \tilde{t}| \ge |t - \lambda_0| - |t - \tilde{t}|$ for $\lambda \in \mathcal{R}_{a,\delta,c}(\xi)$, and $|t - \tilde{t}| = t - \tilde{t} \le t - s_0 - \rho/3 \le |t - \lambda_0| - \rho/3$ for $\tilde{t} \in I$, This, together with (5), gives

(8)
$$\min \{ \min_{\lambda \in \mathcal{R}_{a,\delta,c}(\xi)} |t - \lambda|, 1 \} = \min \{ |t - \lambda_0|, 1 \}$$
$$\leq 2(m(p) + N_U) \rho / \delta(p) \leq 6(m(p) + N_U) \min \{ \min_{\lambda \in \mathcal{R}_{a,\delta,c}(\xi)} |\tilde{t} - \lambda|, 1 \} / \delta(p)$$

for $\tilde{t} \in I$. It is obvious that $|\tilde{t} - \operatorname{Re} \mu_j| \ge \rho/3$ and

$$|t - \operatorname{Re} \mu_j| \le |\tilde{t} - \operatorname{Re} \mu_j| \quad \text{if } (t + \tilde{t})/2 \le \operatorname{Re} \mu_j,$$

$$|t - \operatorname{Re} \mu_j| \le 2|\tilde{t} - \operatorname{Re} \mu_j| \quad \text{if } \operatorname{Re} \mu_j \le 2\tilde{t} - t,$$

$$0 < t - \operatorname{Re} \mu_j \le 2(t - \tilde{t}) \le 2(m(p) + N_U - 1/3)\rho$$

$$\text{if } 2\tilde{t} - t \le \operatorname{Re} \mu_j \le (t + \tilde{t})/2,$$

for $\tilde{t} \in I$ and $1 \leq j \leq \bar{\mu}$. Noting that $|\tilde{t} - \operatorname{Re} \mu_j| \geq \rho/3$, we have

$$|t - \operatorname{Re} \mu_j| \le 6(m(p) + N_U)|\tilde{t} - \operatorname{Re} \mu_j| \text{ for } \tilde{t} \in I \text{ and } 1 \le j \le \bar{\mu},$$

which gives

(9)
$$|g(t, X; p)| \le \{6(m(p) + N_U)\}^{m(p)-1} |g(\tilde{t}, X; p)| \text{ for } \tilde{t} \in I.$$

We write

$$f(s, X; p) = \prod_{j=1}^{m(p)} (s - \lambda_j).$$

We may assume that f(s, X; p) is defined in $\mathbf{R} \times \widetilde{V}(p)$, $\operatorname{Re} \lambda_j \in [-\delta(p), \delta(p)]$ for $1 \leq j \leq m(p)$, modifying $\widetilde{V}(p)$ if necessary. Let $1 \leq j \leq m(p)$. If $|\operatorname{Im} \lambda_j| > \delta$, then we have

$$(10) |\tilde{t} - \lambda_j|^2 \le 4\delta(p)^2 + |\operatorname{Im} \lambda_j|^2 \le (1 + (2/\delta)^2) |\operatorname{Im} \lambda_j|^2 \le (3/\delta)^2 |\operatorname{Im} \lambda_j|^2$$

for $\tilde{t} \in I$. If $|\operatorname{Im} \lambda_j| \leq \delta$ and $\operatorname{Re} \lambda_j < -\delta$, then we have

$$(11) |\tilde{t} - \lambda_j|^2 \le 4\delta(p)^2 + \delta^2 \le (1 + (2/\delta)^2)|t - \lambda_j|^2 \le (3/\delta)^2|t - \lambda_j|^2 \text{ for } \tilde{t} \in I.$$

Let $|\operatorname{Im} \lambda_j| \leq \delta$ and $\operatorname{Re} \lambda_j \geq -\delta$. Then there is $s_j \in \mathcal{R}_{a,\delta,c}(\xi)$ satisfying $|\operatorname{Im} \lambda_j| \geq c|(\operatorname{Re} \lambda_j)_+ - s_j|$. Therefore, we have

(12)
$$|t - \lambda_j| \ge (c|t - (\operatorname{Re}\lambda_j)_+| + |\operatorname{Im}\lambda_j|)/2$$

$$\ge (c|t - s_j| - c|(\operatorname{Re}\lambda_j)_+ - s_j| + |\operatorname{Im}\lambda_j|)/2$$

$$\ge c|t - s_j|/2 \ge c|t - \lambda_0|/2 \ge c|\tilde{t} - \lambda_j|/4 \quad \text{if } |\tilde{t} - \lambda_j| \le 2|t - \lambda_0|.$$

(13)
$$|t - \lambda_j| \ge |\tilde{t} - \lambda_j| - |t - \tilde{t}| \ge |\tilde{t} - \lambda_j| - |t - s_0| \ge |\tilde{t} - \lambda_j|/2$$
 if $|\tilde{t} - \lambda_j| \ge 2|t - \lambda_0|$.

It follows from (10) - (13) that

(14)
$$f(t, X; p) \ge (\min\{\delta/3, c/4\})^{m(p)} f(\tilde{t}, X; p) \quad \text{for } \tilde{t} \in I.$$

(iii) From (7) - (9) and (14) we have

$$\min \{ \min_{\lambda \in \mathcal{R}_{a,\delta,c}(\xi)} |t - \lambda|^2, 1 \} |g(t, X; p)|$$

$$\leq 4 \cdot 6^{3+m(p)} (m(p) + N_U)^{3+m(p)} (\min\{\delta/3, c/4\})^{-m(p)} \delta(p)^{-4}$$

$$\times C^2 C_1(p) f(t, X; p).$$

So (2) holds if $\mathcal{R}_{a,\delta,c}(\xi) \neq \emptyset$, $t \in [\delta(p)/2,\delta(p)]$ and

$$A(p,\delta,c) \ge 4 \cdot 6^{3+m(p)} (m(p) + N_U)^{3+m(p)} (\min\{\delta/3,c/4\})^{-m(p)} \delta(p)^{-4}.$$

Assume that $t < \delta(p)/2$. Then, putting

$$s_0 = \min\{\delta(p), t + |t - \lambda_0|\}$$

and dividing the interval $[t, \delta_0)$ into $(m(p) + N_U)$ subintervals with equal length we repeat the arguments above to prove (2). (2) yields

$$\min\{\min_{s\in\mathcal{R}_{a,\delta,c}(\xi)}|t-s|^2,1\}|b(t,\xi)|^2 \le A'(p,\delta,c)C^2C_1(p)a(t,\xi)$$
 for $t\in[0,\delta(p)]$ and $\xi=\tilde{\varphi}(X,\xi^0,p)$ with $X\in\widetilde{V}(p)$,

where

$$A'(p, \delta, c) = A(p, \delta, c) \max_{(s, Y) \in [0, \delta(p)] \times \widetilde{V}(p)} |c(s, Y; p)|^{-1} (1 + |h(s, Y; p)|).$$

Put $\widetilde{U}(p) = (X^p)^{-1}(\widetilde{V}(p))$ ($\subset \widetilde{U}(\xi^0; p)$). Since \overline{U} is compact, there are $N \in \mathbb{N}$ and $\xi^j \in \overline{U}$ ($1 \leq j \leq N$) such that $\overline{U} \subset \bigcup_{j=1}^N \overset{\circ}{U}_0(\xi^j)$. Here $\overset{\circ}{A}$ denotes the interior of A ($\subset \mathbb{R}^n$). Since $\widetilde{U}_0(\xi^j)$ is compact, there are $P_j \in \mathbb{N}$ and $p^{j,k} \in \widetilde{U}_0(\xi^j)$ ($1 \leq k \leq P_j$) such that $\widetilde{U}_0(\xi^j) \subset \bigcup_{k=1}^{P_j} \widetilde{U}(p^{j,k})$. Therefore, putting

$$A(a, \delta, c) = \max\{A'(p^{j,k}, \delta, c)^{1/2} C_1(p^{j,k})^{1/2}; \ 1 \le j \le N \text{ and } 1 \le k \le P_j\},$$
 we complete the proof of Lemma 2.

References

- [1] Atiyah, M. F., Resolution of singularities and division of distributions, Comm. Pure Appl. Math., 23 (1970), 145–150.
- [2] Wakabayashi, S., On the Cauchy problem for second-order hyperbolic operators with the coefficients of their principal parts depending only on the time variable, Funkcialaj Ekvacioj, **55** (2012), 99–136.
- [3] Wakabayashi, S., On the Cauchy problem for hyperbolic operators with double characteristics whose principal parts have time dependent coefficients, preprint.