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ON THE CAUCHY PROBLEM FOR HYPERBOLIC
OPERATORS WITH TRIPLE CHARACTERISTICS
WHOSE COEFFICIENTS DEPEND ONLY ON
THE TIME VARIABLE I

By

Seiichiro WAKABAYASHI

Abstract. In this paper we investigate the Cauchy problem for
hyperbolic operators with triple characteristics whose coefficients
depend only on the time variable. And we give sufficient conditions
for C* well-posedness. We shall also consider necessary conditions
in [7].

1. Introduction

In [6] we studies the Cauchy problem for hyperbolic operators with double
characteristics whose principal parts have time-dependent coefficients. And we
gave sufficient conditions for the Cauchy problem to be C* well-posed under the
assumption that the coefficients, for instance, are real analytic. These sufficient
conditions are also necessary if the space dimension is less than 3, or if the
coefficients are semi-algebraic functions with respect to the time variable. In [5]
we considered the Cauchy problem for hyperbolic operators of third order with
time-dependent coefficients and defined the sub-sub-principal symbols. We showed
that the Cauchy problem is C* well-posed under some conditions on the sub-
principal symbols and the sub-sub-principal symbols. In this paper we shall deal
with hyperbolic operators with time-dependent coefficients and triple charac-
teristics and give suficient conditions for the Cauchy problem to be C* well-
posed. Our results are extensions of the results given in [5] to higher-order
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hyperbolic operators. In doing so, we shall introduce new quantities as gen-
eralizations of ‘‘sub-sub-principal symbols.” In [7] it will be proved that our
sufficient conditions are also necessary for C* well-posedness under additional

conditions.

Let meN and P(t,7,&) ="+ 3", 30, < @,(1)7"/E" be a polynomial of
rand = (&,...,&,) of degree m whose coefficients a; ,(¢) belong to C* ([0, o]).
Here o = (a1,...,%,) € (Z4)" is a multi-index, [¢f =327, 0; and &* =& - &,

where Z, = NU {0} (={0,1,2,3,...}). We consider the Cauchy problem

P(t,D;, D )u(t,x) = f(t,x) in [0,00) x R",
Diu(t,x)|,_o =u;(x) in R" (0<j<m—1)

(cP) {

in the framework of the space of C* functions, where D, = —id/dt (= —id,),
D, = (Dy,...,D,) = —i(0/0x1,...,0/0xy), f(t,x) e C*([0,00) x R") and uj(x) €
C*R") (0<j<m—1).

DerFiNiTION 1.1. (1) The Cauchy problem (CP) is said to be C* well-posed
if the following conditions (E) and (U) are satisfied:

(E) For any f e C*([0,00) x R") and u; € C*(R") (0 < j <m —1) there is
ue C*([0,0) x R") satisfying (CP).

(U) If s>0, ue C*([0,00) xR"), Dlu(t,x)|,_o=0 (0<j<m-—1) and
P(t,D,,Dy)u(t,x) vanishes for ¢<s, then u(z,x) also vanishes for
r<s.

(i) We say that the Cauchy problem (CP) has finite propagation property
(has finite propagation speeds) if the following condition (F) is satisfied:

(F) For any T > 0 there is a convex closed cone I'r in R” (with its vertex at
the origin) such that '+ C {z > 0} U {0}, and for any (¢, x°) € R""! with
0<ty<T

u=0 In FT(Z(),XO) = {(Z(),XO)} Iy
if ue C*(R"), suppu C [0, 0) x R"” and

P(t,D;,D.)u=0 in Tz (ty,x°).

We assume that the following conditions are satisfied:

(A-1) aj4(t) 1 <j<m,|a|=j,j—1) are real analytic on [0, o).
(A-2) For some g € [1,3/2) aj,(t) € §10H([0,0)) 2<j<m,|a| =j—2).
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Here we say that a(f) € () if for any T >0 there are 7 >0 and Cr >0
satisfying

|0ka(r)| < Crh* (k)" for ke Z, and tel with |f| < T,

where 1 < k < oo and I is a closed interval of R. From (A-1) there are a complex
neighborhood Q of [0, 00) (in C) and dy > 0 such that [—dy, 0) C Q, QN {1 e C;
Re A< T} is compact for any 7 >0, and a;,(f) (1 <j<m, |af =) are
regarded as analytic functions defined in Q. Applying the results in [3], we shall
prove that (CP) has finite propagation property. So we assume (A-2) in order to
apply the results in [3]. Put

P12, ="+ 33 4 (07" IE (= P, 9)),

J=1 Jal=j
Pi(t,7,¢) = Z Z a4 ()T"7E (0<k<m-1).
Jj=m—k |u|=k+j—m

We also assume that the following conditions (H) and (T) are satisfied:

(H) p(t,7,&) is hyperbolic with respect to &= (1,0,...,0) e R""! for re
[—00, 20), Le.,

p(t,t—i, &) #0 for any (1,7,&) € [—do, 0) x R x R™.
(T) The characteristic roots are at most triple, i.e.,
3p(t,7,8) #0 if (1,7,&) €[0,0) x R x $"! and
pt,7,8) = 0up(1,7,8) = 32p(1,7,) = 0,

where S"! = {&eR"; |¢] =1}. Let T'(p(t,-,-),9) be the connected component
of the set {(z,&) e R"™\{0}; p(t,7,&) # 0} which contains 9, and define the
generalized flows K(i ) for p(t,7,¢) by

KT o =1{(t(s),x(s)) € [0,00) x R"; +5 >0 and {(¢(s), x(s))} is

([(),XO)

a Lipschitz continuous curve in [0,00) x R" satisfying
(d/ds)(t(s), x(s)) e T(p(e(s),-,-), )" (a.e. s) and
(1(0), x(0)) = (0,x")},
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where  (f,x°) €[0,0) x R" and T*={(t,x)eR""; tr4+x-&>0 for any
(r,&)eT} K1 (0,x) (resp. K. Y0>) gives an estimate of the influence domain
(resp. the dependence domain) of (#,x°) (see Theorem 1.2 below). To describe
conditions on the lower order terms we define the polynomials /;(z,7,¢)

(= hy(t,7,& p)) of (7,) by
p(t.t—ip, O =y j(t,7,8) for (1,7,¢)€[0,00) x R x R" and yeR.
Since [p(1,7 — iy, &)* = [T ((r = %(1,))> + %), we have

(1.1) he(t,7,8) = > H (EN (1 <k <m),

1<ji<p<-<jr<m =1

where p(t,7,&) = Hi’zl(r—ij(l, £)). Let 2(&) be a set-valued function, whose
values are discrete subsets of C, defined for ¢ e S" ! satisfying the following:

For any T > 0 there is Ny € Z, such that
#{.eR(); Rede0,T]} < Nr for EeS" .

Here #A denotes the number of the elements of a set 4. We assume that
0e #(&) when #(&) # . The subprincipal symbol of P(z,D,,D,) is defined
by

sub a(P)(t,7,&) = Ppu_1(t,7, &) + é@tarp(t, 7,&).

We assume

(L-1) for any T > 0 there is C > 0 such that

(1.2) min{ min |t — s, 1}|sub a(P)(t,7,8)]

seZ(C)
< Chyy (1,7, for (t,7,6) €[0,T] x R x §"!

as the Levi condition for the (m — 1)-th order terms of P. Here we defined
minge o)t —s| =1 when 2({) = . To impose the Levi condition on the
(m —2)-th order terms of P we have to define some quantities. Let z¥ =
(t0,70,E%) € [0, 00) x R x §"~! satisfy (8p)(z°) =0 (0 <k <2). Define a monic
polynomial p(t,7,&;2°) of 7 of degree 3 satisfying the following:
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p(t, 7, & 20 is defined for (¢,¢) e #(z°) and p(t,7,¢) is divided
by p(t,t,& 2% as polynomials of 7, and, putting p(¢,7,&;2°) =
p(t,7,8)/p(t,7,&:2°),
tel(2®) if (t,&) eu(z°), || =1 and p(t,7,&2°) =0,
p(t,7,&2% #0 if (1,8 eu(2%), || =1 and teI(Z%),

where %(z°) is a neighborhood of (5,&%) and I(z°) is a neighborhood of 7.
Then we write

p(t,7,&2°) = +ay (6,620 + ax (1,620t + a3(1, & 2°).

We define

(13) Q&) = Pyaltr,d) + g0l &) ple7, &)
+%5r03p(t7 7,&2%) - 0,p(1,7,&2°)
+ é 02 sub a(P) (1,7, &) - 8,0%p(t, 7, & 2°)

+ % (atagp(tv 7, 67 ZO))2 : afﬁ(tv T, 67 ZO)
for (¢,&) e #(z°) and 7 eR.

The Levi condition for the (m — 2)-th order terms of P is the following:

(L-2) For any z° € [0,00) x R x §"~! with (8p)(z°) =0 (0 < k < 2) there is
C >0 such that

) mind min (1 o1 }00 (0,523, 6527)
seR(E

< Chya(t,—ar (1,E2°) /3,67 for (1,¢) e () with [¢] = 1.

We note that

(1.5) O(t,7,&2%) = Pi(t,7,¢) + %6,263]7(1, 7,8) + éasz(l, ,&) - 0,0%p(t,7,&)

when m = 3. In [5] we defined the sub-sub-principal symbol sub* a(P)(t,7,¢) of
P by the right-hand side of (1.5).
Now we can state our main result.
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THEOREM 1.2. We assume that the conditions (A-1), (A-2), (H), (T), (L-1)
and (L-2) are satisfied. Then the Cauchy problem (CP) is C* well-posed. More-
over, (CP) has finite propagation property, more precisely, if (ty,x°) € (0, 0) x R”
and ue C*([0,00) x R") satisfies (CP), uj(x) =0 near {xeR"; (0,x) € K o >}
O0<j<m-—1) and f =0 near K ) (in [0,00) x R"), then (ty,x°) ¢ supp w.

The remainder of this paper is organized as follows. We shall give pre-
liminary lemmas in §2. In §3 we shall prove Theorem 1.2.

2. Preliminaries

Let I be an interval of R, and let I' be an open cone or a closed cone in
R™\{0}. Here ‘cone’ means that its vertex is the origin. Let r,x" € R. We say that
a(t,&) e St o(I x I') if a(1,{) e C*(I x I') and

(1) D{oza(t¢)] < Gl
for (1,&) el x (TN{|¢|>1}) and any jeZ, and o e (Z,)".

When a(t,¢;¢) also depends on a parameter ¢, we say that a(t,&;e) € Sf (I x I)
uniformly in ¢ if the C;, in (2.1) with a(t, &) replaced by a(¢,&;¢) can be chosen
so that they do not depend on &. Moreover, we say that a(z,7,¢) € %"0" (IxT)
if a(t,7,&) = Z["Oa,(l &)/ and ai(1,¢) € Sl"g’“ (I xT), where [x] denotes the
largest integer < x and 5”1’(0" (I xT) = {0} if x < 0. We also write #",(I x ') =
,%"00(1 xT) and 95 “(IxT) =g %5 (I xT). When a(t,7,&6) =
Zj 0a](t & e)t/ depend on a parameter ¢, we say that a(t,7,&¢) € ,%’f(’)’(,(l x T
uniformly in ¢ if a;(¢,&;¢) € Sl";’g'(/_*"([ x ') uniformly in e&.

LemMa 2.1. Let T be a closed cone in R"\{0}, and let a(t,&) be a real
analytic symbol defined in [0, 1] x T, which is positively homogeneous in & So there
is a complex neighborhood Q of [0,1] such that a(t,&) is holomorphic in t € Q for
cel. Put

{A1eQ;a(2,8) =0} if a(t,&) #£0 in t,

1% if a(t,&)=0int

for EeTNS" 1. Then there are NeZ, and C >0 such that #R,(&) < N for
EeTnS™ ! and

.0 ={

min{ min_ |t — s, 1}|6ta(t E)| < Cla(t, &) for (t,€) €[0,1] x (TNS"™ ).

s€Ra(&)
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REMARK. It follows from the proof that there are Cy >0 (keN) sat-
isfying
min{ min)|t—s|",1}afa(z,5)| < Cila(1,é)] if 1<k<N

s€Rq(E

min{ n;?n(lf) |t — sV, 1}|a,ka(z, )| < Crla(t,&)| if k>N

for (1,&) €[0,1] x (CnS™1).

PrOOF. Replacing [—d,0] and U with [0,1] and {&eT;1/2 <|¢| <2},
respectively, we apply the arguments as in the proof of Lemma 2.2 of [6].
Put

1
(&) = | lateoF

If k(&) = 0, then the lemma become trivial. So we may assume that «(&) # 0. Let
Ee{fel; 1/2 <|¢ <2). We apply Hironaka’s resolution theorem to (&) (see
[1]). Then there are an open neighborhood U(&°) of ¢°, a real analytic manifold
U(&%), a proper analytic mapping ¢ = ¢(¢"): U(E") it (@) (= p(#;¢°)) €
U(&%) satisfying the following:

() ¢:UE"N\A — U(E")\4 is an isomorphism, where 4 ={¢eT;1/2<
|€] <2 and (&) =0} and 4 = ¢ ' (A).

(ii) For each pe U(E%) there are local analytic coordinates X (= X7) =
(X1,...,X») (= (X7,...,X})) centered at p, r(p)eZ, with r(p) <n,
sc(p) eN (1 <k <r(p)), a neighborhood U(E% p) of p and a real
analytic function e(X) in V(&°; p) such that e(X) >0 for X € V(& p)
and

r(p)

w(p(@) = e(X (@) [[ Xe@™ " (@e UE%p)),

k=1
where V(&% p) = {X(@); iie U(&% p)} and [[[7)--- =1 if r(p) = 0.

Here V(&% p) is a neighborhood of 0 in R” and we have used the fact
that x(¢) > 0. Define ¢ (= ¢(&", p)) : V(&% p) — U(E") by ¢(X (@) (= 6(X7(a);
& p)) = o) (= (i; &%) for e UE% p). Let Up(£®) be a compact neigh-
borhood of &% in U(&Y), and put Uy(&°) = ¢~ (Up(£%)). Fix pe Up(£%), and
put
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OC(p) = (Sl(p)7 oo 7Sr(p)(p)707 v aO) € (ZJr)na

exlt: p) = 5 03l 6X)) o

Note that o > a(p) if « € (Z4)" and ¢,(f; p) # 0 in ¢ (see the proof of Lemma 2.2
of [6]). So we can write

a(t,p(X)) = X*Pa(t, X; p),
a(t, X; p) = cyp)(t; p) +b(1, X; p),

where b(f,X;p) is real analytic in (z,X) and satisfies b(z,0;p) =0. Since
C¢y(p)(t; p) # 0 in ¢, we can apply the Weierstrass preparation theorem to a(z, X; p)
at (¢,X) = (£,0), where ¢y € [0,1]. Then there are J(p, %) > 0, a neighborhood
V(p,to) of 0 in V(&°p), m(p,ty) € Z,, a real analytic function c(z, X;p,1)
defined in [tg —d(p,to),t0 +(p,t0)] X V(p,ty) and real analytic functions
ar(X; p, to) defined in V(p,t) (1 <k <m(p,ty)) such that c(z, X; p, 1) # 0 and

a(t, X; p) = c(t, X; p,to) (1" + ay (X; p, to)e™ P~V a0 (X5 p, o)

in [to —6(p,10), 10 +6(p, 10)] x V(p,1o). Note that 6(p,1), V(p,t), m(p, ),
c(t,X; p,to) and the ar(X;p, ) also depend on &% So we can write

m(p, 1

a(t, (X)) = X*Pe(1, X; p, to) H (1 —u(X;p,00))

for (¢,X) €[ty —d(p, t0), 10 +3(p, t0)] X V(p,ty). We may assume that

Rl (X)) = {t1(X5p,00), - twip, ) (X5 py20)} if X1 Xy #0,
A 7 if X)X, =0.

Then we have

22 mind _min_ 0-s1 et g00)] < Clo.)late 500))
S€ Ra(P(X))

for (t,X) € [to —d(p, to), to +(p, 10)] x V(p, ty), where C(p,19) > 0. Since [0, 1] x

{¢eT; 1/2 < |¢] <2} and Uy(£°) are compact, compactness arguments prove the

lemma. O

From the assumption (T) there are d; > 0, No € N, m(j,k) € N, open cones
[; in R"\{0}, r(j) e N, compact intervals J; x and p/*(1,7,¢) e y{% )([0,61] %



On the Cauchy problem for hyperbolic operators I 9

(T\{0})) (1 <j <Ny, 1<k<r(j)) such that m(j,k) <3, the p/*(1,7,&) are
monic polynomials of 7 and positively homogeneous of degree m(j, k) in (z,¢) €
R x (T)\{0}) such that \JY I; 58", J,nJy =@ for 1 <j<N, and
1 <k<I<r()),

r(J)

(23)  pt,7.&) =]]r"* (7, for (1,7,8)€[0,01] x R x (T;nS"),
k=1

tedix if 1<j<Ny, 1<k<r()), (1,Eel0,6]x(T;NnS" 1), reC and

pPR(t,1,&) =0, and for each (j,k) with 1 <j <Ny and 1 <k <r(j) there is
(#,6) e R x (T; N S"1) satisfying

(@“p"%)(0,2,8)=0 (0 <u<m(j.k)—1).

Let 6 >0 and I' be a closed cone in R"\{0}. We say that a(t,{) e
oA.([0,0] x T') if a(¢,&) is real analytic in [0,0] x I' and a classical symbol, ie.,
when a(t,&) # 0, there are x € Z and real analytic symbols a;(¢,&) (j € Z,) such
that ay(1,&) # 0, a;(t, &) is positively homogeneous of degree (x — j) in & (je Zy)
and a(1,&) ~ Y7 ai(t,€), ie.,

a(t7 f) - Z aj(tv é)

J=

< CN|6|K7N

for (z,&) €10,0] x I' with |¢] = 1 and N € N, where Cy > 0. Here ay(z, &) is called
the principal symbol of a(t,¢).

LEMMA 2.2.  Assume that p(t,t,&) € oZ4([0,0] x T')[z] is a monic polynomial
of z, positively homogeneous of degree m (€ N) in (t,&) and hyperbolic in 7, ie.,
p(t,t 1,8 #0 for (¢,7,8) €[0,0] x Rx I'. Write

m

p(t,1,6) = [ (e = 4(1,9)).

J=1

Then, for each fixed ¢ e T NS"! we can enumerate {3;(1,&)} so that the (1, &)
are real analytic in t € [0,0]. Moreover, for any v e Z, there is N, (= N(p)) C T
satisfying the following:

Q) Ale Ny if 2>0 and Ee N,

(i) p,(A3) = 0.
(i) There is N, € Z, such that
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#{t€10,0]; 0¥(4(1,&) — 4 (1,&)) =0} < N,

if 0<u<v,1<j<k<mand 0/(%(t,&) — A(t,&)) #0 in t,
#{1€[0,0]; 0¥4;(1,&€) =0} <N,

if 0<u<v,1<j<mand 0/%(t,&) #0 in t

SJor &e T\ N,

Here yu, denotes the Lebesgue measure in R".

REMARK. The lemma is a generalization of Lemma 2.3 in [5]. We also need
to apply the lemma to d.p/*(¢,7,&) with m(j, k) = 3.

Proor. We will modify the proof of Lemma 2.3 of [5]. First fix e
N S" ! For ) €[0,9] .4, denotes the convergent power series ring of (£ — ).
Since o7, is a unique factorization domain, .7, [z] is also a unique factorization
domain. Applying the same argument as in the proof of Lemma 2.3 of [5], we
can prove the first part of the lemma. In doing so we note that A (t +z",&)
is analytic in a complex neighborhood of z=0 with some reN and that
A, (to + 2", &) can be expanded as a power series of z (see the proof of Lemma 2.3
of [5]). Hyperbolicity implies that A;(f +z",&) is real if z" is real, and that
A (to + 27, &) is a power series of z". So we can take r =1 and 4 (¢, &) is analytic
in ¢ near ¢ = fp. We denote by X the quotient field of .o7,([0,0] x T'). Then X[z] is
a unique factorization domain and p(z,7,¢) € Z[t]. Write

Tp(tv T, i) = pl([afaé)rl o 'pg(tvraé)rav

where a,r; €N, the p/(1,7,¢) (€ Z[z]) are irreducible in Z[z] and p/(7,7,&) and
p*(t,7,&) are mutually prime if j # k. Define ¢(¢,7,&) = Hj‘;l p/(t, 7, &), and let
D(t,&) be the discriminant of ¢(f,7,£) =0 in 7. Then there are di(z,¢) €

Z.(]0,0] x T)\{0} (k=0,1) such that
D(1,&) = do(1,£)/di(1, ),

since D(1,£) #0 in X. Here we may assume that the di(7,£) are positively
homogeneous in ¢ (see the proof of Lemma 2.3 of [5]). Write ¢(¢,7,&) =t +
St a(r,¢)e™ ). Similarly, there are al(t,¢&) € A([0,0] xT) (1< j<m—1,
!/ =0,1) such that the cAzjl(t7 £) are positively homogeneous in ¢, Ezjl(t, &) #0 (in

A([0,0] x T)) and a;(1,&) = a)(1,¢)/a} (1,£), since the a;(z,&) are positively
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homogeneous in &. Put

{éel"dolédllérﬁ té_Omte[Oé]}

Then we have s,(./5) = 0. We can choose functions 4(z,&) (1 < j <) defined
in [0,0] x (I'\A%) such that the ij(l, £) are real analytic in ¢ for a fixed & e T\ A
and

q(t,7,&) = [[(r = 4(1,€)) for 1€[0,6] and &e '\ Aj.

i=1
Note that
Oa(6,8), o (1,6} = {0, 04(4,E), -« An(8,E)}

for (¢,&) €[0,0] x (I\Ag). We may assume that Au(7,¢) =0. Note that the
a;(t,&) are real analytic in 7€ [0,0] for &e I\ Ag. If EeT\A) and

teDéz{se[O,(ﬂ dosfdlsfﬁ (s,8) 750}

then the roots of ¢(z,7,¢) = 0 in 7 are simple. It follows from Lemma 2.2 and its
remark of [6] that there is Ny e Z, satisfying #([0,0]\D;) < Ny for & e '\ Ap.
This proves the second part of the lemma for v = 0. Let £ € I'\.A%. Then we have

a-ﬂ](t, T, é)"f:}:/(t.f) N a)‘j’j(tv é) + atq(tv T, f)|1—:2/(1_§) =0
for 1 < j <m. Therefore, for t e D we have
5;/@‘(2‘, é) = _aICI([aT:é)h:@(,_@)/arqmTvé)|1:j/(,7§) (1 <Jj< ’h)
Since Ap(7,&) =0, we have

H i(1,8) = 0.
Noting that

TG, ) = A, 9)oua(t,7,6)] s,

k#j

= JI  Ge(t&) =t &) = (=1)"""2D(1,¢)

1<k, l<m,k#l
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for a fixed j with 1 < j<m, we can write the other fundamental symmetric
expressions as follows:

Zm: H 0udi (1, &) = (—1)m-1Hmim=1)/2

=1 k#j

m

X Z H{(ik(l‘? é) - /,A{j(l7 é))&,q(l‘, T, £)|f:ik([’€)}/D(l7 é)

=1 k#j

= E,;,,l(l‘, é)/D(t> 5)7

i@tij(t, f) = El(tv f)/D(tv é)’
j=1

where the Ei(t,¢) are polynomials of {0)d,(t, M<j<mt1=0,1- Put

]B(Z‘,T,é) :Tmel(tyé)D(taé)ilfrhil +E2(taé) ( f) ! m 2
oo (D) By (1,6)D(1,8)

Let us repeat the above argument with 7p replaced by p. We write

Itjs

@—5105D>

pt,7,8) = pl(1,1, &)1 p7 (1,7,8)"

where o',r/ €N, the p/(t,7,&) (€ Z[t]) are irreducible in X[t] and p/(z,7,¢) and
pk(t,7,&) are mutually prime if j # k. Put

q(t,7,8) = Hptrf

and let D(z,¢) be the discriminant of g(z,7,&) =0 in 7. Then we can write

é(tv é) = 070(t, é)/&]([, é),

where dy(t,&) € 44([0,0] x T)\{0}. Here we may assume that the di(1,&) are
positively homogeneous in &. Write
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m—1
6([; T, f) = T’h + Zdj(tv f)lﬁlija
j=1

a(1,¢) = a)(1,9)/a (1,¢) (1<j<m—1),

where d/(l, & edy([0,0]xT) (1<j<m—-1,1=0,1) are positively homoge-
neous in ¢ and @} (7,¢) # 0 in /([0,0] x T). Define

m

n—1
{5dﬁ@t5mszl zg_Omzemﬂ}uwa

j=1

Then we have g, (A7) =0. It is obvious that /] is a cone. Similarly, there is
Ny € Z, such that

#{1€(0,0]; 8,(J(1,¢) — Ai(1,€)) = 0}

(s#{te[05] dltfril_[ sz})gNl

if e\, 1 <j<k<m and &,(4 Li(1,8) — Ae(t,E)) #0 in 7. This proves the
second part of the lemma for v = 1. Repeating the above arguments we can prove
the lemma for v=2,3,..., inductively. O

We choose p(1) € &0} (R) so that p(r) > 0, Jp(t)dt =1 and supp p C {r e R;
|t| < 1}. Define

aj (t;€) = Jps(s)ajﬁa(t—s) ds 3<j<m, ol <j-3),

m

Pe(tr&e)= > Y a,(e"7E (0<k<m=3),

Jj=m—k |u|=k+j—m

m

2
t‘[é mekt‘[é+zpmkt‘[é)
k=0

for 0 <e <1, where p,(t) = e !p(t/e).

We approximate P(z,7,&) by P(¢,7,&;¢) in order to prove that (CP) has finite
propagation property. We factorized p(z,7,¢) as (2.3). By the factorization
theorem we can write

(2.4) P(t,7,&6) = Pj'l(t,r, &e)o Pj’z(t, 7,&;¢8)

co PIUN(t 1, &5 8) + Ri(1,7, &)
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for 1 <j <Ny, (,£)€[0,6;] x I; with [£] > 1 and ¢ € (0,1], where
P (15, &) = P (65,8 + g (60,0 + ol (1.8 + (1 e,

gl (1,7,¢) € y{’g(«”")“*"([o,él] x ([;\{0})) (/=0,1) are positively homogeneous
of degree (m(j,k) — 1 —1) in (z,&) for |&] > 1, ¥ (1,7, &e) € #0071 72([0,01] x
(T;\{0})) uniformly in & and R;(,7,&¢) € %" "7 ([0,01] x (T;\{0})) uniformly
in ¢ (see, e.g., [2] and, also, [6]). Here we denote by a(t,7,&) o b(t,7, &) the symbol
of a(t,D;, Dy)b(t,D;, D). There are compact intervals J; x (1 <j< Ny, 1 <k<
r(j)) and M >0 such that

r(J)
ULk=1-MM, LunLi=@ (1<j<Nok#I),
k=1

telix if 1<j< Ny, 1 <k<r()j), (57,8 €[0,6)] x Rx ([;n8")
and pj’k(t,r,f) =0,

where | denotes the interior of 1 (CR). For 1 < j<Nyand J C{1,2,...,r())}
we define

H;([af,é) = H Pj’ﬂ(tafa é)
l<p<r(j),u¢J

Now we fix j with 1 < j < Ny. Until the end of the proof of Lemma 2.4 except
the statements of Lemmas 2.3 and 2.4 we omit the subscript j and the superscript
jof Ty, PRR(Y, Ri(), pP*(), Lk, TI)(2,7,&), ..., and “j” of r(j), m(j,k),... and
so on, ie., we write I';, P/K(:), Ri(-), p7*(), Lix, TI(t,7, &), r(j), m(j,k),... as
T, PX(:), R("), p*(), I, T, (t,7,&), r, m(k),..., respectively. Let a(t,t,¢) and
b(t,7,&) be defined in %. We write

a(t,7,&) = O(b(t,7,&)) for (t,7,&) e
if there is C > 0 satisfying
la(t,7,&)| < Clb(t,7,&)| for (t,7,&) e .
Assume that a(t,7,&),b(t,7,&) = 0. We write
a(t,t,&) ~b(t,7,&) for (t,7,&) e U
if there is C > 0 satisfying

C’la(t, 7,8) < b(t,1,¢) < Ca(t,1,&) for (t,7,8) e U.
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LemMa 2.3. Let 1 < j< Ny We have

(2.5)  suba(P)(t,7,&) = Zsub a(P7F)(t f,f)l‘[{k}(l‘, 7,&)

_é Z {p/k J }(tafvé)H{kJ}(tvf;f)

1<k<I<r(j)
r(J
=3 sub o(PPH) (1,1, T, (1,7,) + Olhy1 (1,7,8) )
k=1

Sor (t,7,&) €[0,61] x R x [ with |&| > 1,
where
{p7*, PP} (1, 7,8) = 0p™(1,7.€) - 0p” ! (1,7, &) — up™ (1,7, &) 0ep™ (1,7, 8).
Moreover, we have

(26) meZ(tv T, é)

(J)

~

H{’k} i Z d.pP - o,p7! - sub a(P7 )ka I

1 I <k<I<r(j),v#k,1

~
Il

LY P e,
1<k<l<r())

i .
-3 > ddp"tsubo(PIT
1<k, I<r(j),k#1

—i Y {8p?t oy sub o(PM) + p?! - b sub a(PIR)MT

1<k<l<r(j)

1
-5 > Aap’hdtopr vap’! - adlp g,
1<k<I<r(j)

+ Ol 2(1,1,E)'?)  for (1,7,8) €[0,61] x R x T with €] > 1,

where g/ = q7¥(t,7,8), Tf,y = I}, (1,7,8), ep* = dupPK(1,7,€), sub o(P1") =
sub a(P/)(t,7,8),. ...

Proor. We can prove by induction on r that
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(27) Pl(tffaé;g) OPZ(ta 775;8) 6---0 Pr<l7T7 678>

r r
— Hpk(l, T, f) + Z(](])((l, T, f)H{k} —1i Z afpk . a,pl . H{k_’[}
k=1 k=1

1<k<iI<r

—i Z op* - 0" gk 0y + Zﬂﬁn{k}
1 <k<I<r,v#k,l k=1

+ Z as a0y — i Z {0.p" - 0ugl + 0p" - 0:qf M Ty

I<k<i<r 1<k<i<r
1
-3 . wptalp Ty
I<k<i<r
- > aptap’ ot Ty,
l<k<l<v<r
_ 61(.6»\ l.av 61.821)1—[
P {0:0:p" - Op” + 0p’ - O p g 10y
1<k<I<v<r
— > ap* - p' - 0ep” - 0" i1,
I<k<lI<rk<v<p<r
vELu#l

€ %"7(';1’72([0,51] x (C\{0})) uniformly in e,
where, for example, Ty =[]/, xx pl(t,7,&). It follows from (1.1) that
(2.8) Py (1,7,E; p*) X By (1,7, €)
for (¢,7,&) € [0,01] x I x (T NS")
if 1<k<rand 0=</!<m(k),
(29)  hyy-i(t.7,& pF) & (2] + 1)
for (t,7,&) €[0,01] x (R\Ix) x (TNS")
if 1<k<rand 0</=<mk),
(2.10) Iyt 7, E) = (Jo] + 1)
for (t,7,&) €[0,81] x ((—o0, —M)U (M, 0)) x (T NS")

if 1</<m.
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We have also, with C > 0,

(2.11) 1010p* (1,7, )| < Chage (1,7, 2 (|2 + 1)

for | <k <r, uveZ, with u+v<m(k) and (¢,7,¢) € [0,5;] x R x (T NS"1).
(2.7)-(2.11) prove the lemma. O

Now assume that (L-1) is satisfied. Let 1 < ko < r with m(ko) = 3. Then there
is C >0 such that

mm{ m;? == 1}|mb a(PX)(1,7,8)| < Cha(t, 1, & p*o)!/?

for (1,7,¢) €10,61) x R x ([N S"1). Write

m(k)

pk(t7 T, é) = H(T - ;‘lk(ta é));

=1
p/{f(tv 7,¢) = pk(tv 7,8)/(r - )“/Ij(tv <)

(1<k<r 1 <u<m(k). Note that h(t,7,&p%) =30 ph(t,z,6)> It fol-
lows from Lagrange’s interpolation formula that there are functions b,(t,¢)
(1 <u<3) and C > 0 satisfying

3
(2.12) sub a(P*)(1,7,8) = bu(t,&)pi(1,7,),
n=1
(2.13) min{ m}{l |t — 5], }|b,,(l, <
seR(&)

for (1,¢) €[0,61] x ([N S"!) (see the proof of Lemma 2.5 of [5]).

LemMmA 2.4. Assume that (L-1) is satisfied, and that 1 < j < Ny, 1 <ky <
r(j) and m(j, ko) = 3. Then there is C >0 such that

(2.14) min{ min |7 — s, 1}|6f sub a(P7*) (1, 7,&)|
seA(¢/1<N)

< Chy_(1,7,& p"")'2 (p<2),
(2.15) min{seg}%glél) = s, 1}|a, b (P (1,7, )1/ (I2] + 1¢])

< Chy (1,7,& pho)l/?

Jor (1,7,&) €[0,61] x R x T with |&| > 1, modifying #(E) if necessary.
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PROOF. (2.14) easily follows from (2.12) and (2.13). Write p*o(,7,¢&) = o° +
aim(t? &+ aéq)(l, O+ aé“’(l, £). We have

sub a(P*)(1,7,&) = sub a(P*)(t,—a’ (1,¢)/3,¢)
+ (T + a*(1,€)/3)(8: sub a(P*))(t,—a}*(1,¢)/3,¢)

* % (t+a"(1,£)/3)°(07 sub a(P*))(1,0,¢),
noting that deg, sub a(P*)(t,7,&) < 2. Therefore, we have
(2.16) |0, sub a(P*)(t,7,&)|

<10, sub a(P*)(t,—a" /3, &)|

+ 3101, )] (0. sub o (P)) (1, ~a3,)]

+ |t 4 ako /3] - |0,(0; sub a(P*))(1, —ak? /3, &)|
+Jt+a /3] [0,y (1,)|/3 - |(87 sub a(P*))(1,0, )|
+%|‘c +a® /37 - 10,(07 sub a(P*))(1,0,¢)].

Modifying #(&) if necessary, we can assume that
{Re 4; 2€ Q) and sub o(P")(1,—af(2,¢)/3,&) = 0} C (&)
If sub a(P*)(1, —a(1,£)/3,&) #0 in ¢

for ¢ e [ N S" !, where Q is a compact complex neighborhood of [0,5]. Lemma
2.1 yields

. . 2 k k
ming min |t —s|°, 1|0, sub a(P™)(t, —a;°(¢,£)/3,
{se.@(é”{)' | }' o sub a(P7)(1,—ay"(1,£)/3,¢)|

< C min min |t —s|,1 sub o( P /, —a t, 3,
{se%@/a)' | }' (P) (6, =a*(1,€)/3, )]

for (¢,&) €[0,0,] x T with |€] > 1, where C > 0. Note that —a}"(z,&)/3 € I, for
(t,6) €[0,61] x (T NS™ ). So by (L-1), (2.8) and (1.1) we have, with C >0,

(2.17) min{ min |t—s2,1}|6,subJ(Pk“)(t,—af“](t,é)/37f)|/|f|

seA(¢/1<N)

< Chy(t,—al (1,8)/3,& p') '/
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for (#,¢) €[0,6,] x T with [¢] > 1. Since

w

e+ d(1,8) /3] < Z — 206, < Iy(t,7,& pR)' 2,

hy(t,—af*(1,¢)/3,& p*o ‘/Z_ZIa (£,6)/3+ 2 (1, )|

IA

2 )
U = 2" (1O + 12" = 23" + 123° = 21}

IA

3
22 16, 8) < 4 (1,7,¢: pH) 2

for (#,7,¢) €10,6;) x Rx T with [¢] > 1, (2.14), (2.16) and (2.17) give (2.15).
O

We wrote
P78 =7+ a (1,7 + a1+ o (1,9)
if 1<j<Ny, 1<k<r(j) and m(j,k)=3. We say that (L-1) for [0,d] is

satisfied if (1.2) is satisfied with [0, T] replaced by [0,0], and that (L-2) for [0,0]
is satisfied if (1.4) is satisfied with [0, c0) replaced by [0,d].

LemMma 2.5. (i) (L-1) for [0,0] is satisfied if and only if there is C > 0 such
that

(2.18) min{ m}i)(n) |t — s, 1}|sub a(P7R)(1,7,8)|
seR(E

< Chp(jar1 (1,70, p™ 2 for (1,7,8) €0,61] x R x (TS

provided 1 < j < Ny, 1 <k <r(j) and m(j, k) =2 or 3.
(i) Assume that (L-1) for [0,0,] is satisfied. Then (L-2) for [0,01] is satisfied
if and only if there is C >0 such that

(2.19) mln{ min |1 — s|%, 1}|sub2 a(PP9) (1, —al*(1,6)/3,¢)]

seA(S)

< Chy(t,—al™(1,8)/3,& p")'* for (1,8) €]0,61] x (T;nS"")
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provided 1 < j < Ny, | <k <r(j) and m(j, k) =3, modifying #(&) if necessary,
where

(2.20) sub® a(P7*)(1,7,8) = ¢ (1,7,&) + éafafpf’k(z, 7,¢)

i

12 a‘fqé7k(l7 T, é) ) 6t63p‘j"k(l‘, T, f)

+

REMARK. In the lemma the interval [0,0,] can be replaced by a closed
subinterval of [0,6;]. From (2.5) we can see that whether the sub a(P/*)(t,7,&)
satisfy (2.18) or not does not depend on the order of the product in (2.4) while
they depend on the order. Moreover, (2.26) below implies that whether the
sub® a(P7*)(t,7,&) satisfy (2.19) or not does not depend on the order of the
product in (2.4) while they depend on the order.

ProOF. (2.5) and (2.8)—(2.10) prove the first assertion (i). Assume that
1 <j < No, 2°=(t0,70,°) €[0,01] x R x ([;nS"1), (0lp)(z°) =0 (0<1<2),
1 < ko < r(j), m(j,ko)=3 and 1€l Note that p(r,7,&z%) = piko(s,1,&)
and p(t,t,&;2%) = H{ko}(t,r,é). Moreover, we may assume that %(z°) = [0,6;] x
(F;\{0}) and I(z°) =14, in the definition of Q(z,7,&;2°), and Q(t,7,¢&;20) is
defined in [0,6;] x R x (T';\{0}). We say that

a(t,7,&) =0 (mod (L-2)) at z° for (1,¢) €[0,01] x T; with [&] > 1

if there is C > 0 such that

min{ min |7 — s|?, l}a(l, —al™(1,¢)/3,¢)|

seR(E)
< Chyo(t,—al™(1,8)/3,6)'* for (1,&) €[0,6,] x (T; N S" ).

(L-2) implies that Q(z,7,¢&;z%) =0 (mod (L-2)) at z° for (¢,&) € [0,61] x ['; with
|€] = 1. It follows from (2.6) that

(221) g™ (I, (1,7,9)
= mfz(l‘,‘[,é)

+i Y apth( T8 0ph (1,1,8) - sub o(PPR) (1,7, )
1<k<l<r())
ke, 1#ko

x H{ko,k,l}(t7 7,¢)
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_ Z sub a(P/%0) sub J(Pj’k)nfko,k}
1<k<r(j),k#ko
i : ko [T/
+— Z 5[6117]’]( - sub O-(Pj’ko)n{lko.k}
1 <k<r(j),k#ko

+i Z d,p’* - 0. sub a(Pk0) . H{kmk}
ko<k=r())

+1i Z 6ij'k - 0; sub U(Pj’k“) . H‘{jko‘k}
1 <k<ko

+ Z ap* - a,02p" 'H{ko,k}

ko<k<r(j)

N =

1 - . A
5 D0 AR Qe T+ Ol (17,8
1 <k<ky

for (t,7,&) €[0,61] x Lk, x T; with [&] > 1,

where sub a(P/%0) = sub a(P/*0)(¢,1,¢),..., since

My, (1,7, &) = O(p? (1,7, &)[¢) "0

= Oy (1,7, 21" (ke # ko),

0pto(t,7,8) = Oha(t,7,& pH*) ),

ap™ o (t,7,8) = O(ha (1,7, & p™*0) 7|¢)),

i0:p" (1,7, &) = O (1,7, & pF) )¢

for (1,7,&) €[0,61] x Lk, x T with || > 1.
It also follows from (1.3) and Lemma 2.3 that
(222) Puoaltn.) + 020275 (0,7,8) T (1,7,)
+ é 02 sub a(P)(1,7,8) - 0,027 (1,7,&)

1 . .
=0(nt.&2%) — ¢ 0:02p" " (1,7,€) - 0Ty, (1, 7,€)

1 . )
- (8,02 p7%(1,7,6))* - oI, (1,7, 8),

21
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(2'23) {a$Q({JCO(Za T é) : H{ko}(lﬂ Ty é) - 612 sub G(P)(l, 7, é)}atafpj’ko(tv Ty é)
= —{20; sub o(P"*) - 0.1, (1,7,

+sub o(P10) - 211 (1,7, 8)}0,07p7 (1,7, &)

+% Z {6alpj’k _ atarzpj-,ka . anLk}H{ko . atagpj,k()
ko<k=r(j) )

i . A 4 , A
-3 Z {60,p"* — atﬁfp/’k‘) . arplﬁk}nfkmk} . 8,83;7/”‘0

1 <k<ky
+ O a(t,7,6)"?) for (1,7,) €[0,01] X L4, x T; with |&] > 1,
since
07 sub o(PHR)(1,7,¢) = a2¢7 " (1,7,9),
o p (1,7, €), pP (1,7, 8)}
= 60,p" " (1,7,8) = 0,07p" 0 (1,7,8) - 0ep" (1,7, 9)
+ O (1,7, & ph*o) 2 |g D
for (¢,7,&) €[0,61] x Ij g, x T; with |¢] > 1 and k # ko,
I(t,7,& p M) 21" = O(ho(1,7,8)'?)
for (¢,7,&) €[0,01] x Iy, x [; with [¢] > 1.
Therefore, (2.20)—(2.23) yield
(224)  sub® o(P/)(1,7, O, (1,7, €)
= g™ (6,7, 91, \(1,7,9)
+ é@f@fpj’k(‘ (t,7,8) - T\ + é 07 sub a(P)0,07p’"

+ é {D2q)™ kao} — 02 sub a(P)}0,02p’ k0

= Poalt,7,8) + 5 00200 Ty + 2502 sub o(P) - 6,02

{
+i Z @fpj‘k . atpf=l - sub O'(Pj’ko)nl{kmk,l}

1<k<I<r(j)
k,l#ko
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- Z sub a(P/%) sub o( P/ )kao 0
1<k <r(j),k#ko

+5 Z 0,0.p"* - sub (P’ k“)l'I{/,C K
1<k <r()),k#ko

+i Z dp’* - 0, sub a(PFF0) . kaok}
ko<k <r(j)

) T .
+i Z d.p”" - 0, sub a(P7F0) . kao K
1 <k<ko

+s > apttadlptmy

ko<k Sr(j)

N =

1 N
t5 Y Gt o Ty + Olhua(1,1.9)')

1 <k<ky

{az IR 11— 0% sub (P)}o,02pl ko

{ko}

=i Z O pP (1,7, 8) - 0,p7 (1,7, &) - sub a(P70) (1,7, &)

1<k<l<r())
k,1#ky

kao’k‘ [}(Z? T? é)

- Z sub a(P/*) sub o(P’ )kao 0
<k <r(J),k#ko

i ,
+5 Z 0,0.p"* - sub a(P”kO)l'I{k K
1<k<r(j),k#ko

+1 Z 0.p7* - 8, sub a(P7*0) . H{ko’k}
1 <k<k

+i Z 0,pk - 0, sub a(P7H0) . kao,k}
ko<k<r(j)

1 .
+5 D0 dpth ol T+ 07 &)
1 <k<ko

1 2 ik ko1
_El;k (8,0%p” o) o.p’ S 1T
<K<Ky

23
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i . . N .
— 5 {20: sub o(PPR0) - 0,11, | + sub o(PP0)0 ML, \}0,07p"

+ O(hp2(1,1,8)'?) for (1,7,&) €[0,01] x L4, x Tj with [&] = 1,
since

) L )
61ka0}(t,r,f) = Z a‘rpj 'ka07k} + Z 5rP H{ko 3%

ko<k <r(j) 1 <k<ko
Ol (o8 = 3 a4 30 ApH T .
ko<k<r(j) 1<k<ky

It follows from (2.14), (2.15), and (2.24) that

(225)  sub® o(PP*) (1,7, O, \ (1,7,8)

1 o A
= Q0(1,1,¢& ZO) —1—5 Z {afafp-/”‘“ —g(ararzpj’ko)z}a kan k}

1 <k<ky

(mod (L-2)) at z° for (¢,¢) e [0,6,] x T; with |¢] > 1.
On the other hand, we have
(070" (, =l (1,£)/3,¢) — ((a Ip (1, —al ™ [3,¢))?
= 0,{(8,0:p" ) (¢, —al ™ /3,8)}
since

daf(1,8) = *5z5,2pj’l‘°(t, 7,8).

Modifying £(&) if necessary, we can assume that
{Re 4; AeQ and (8,8.p7 %) (4, —al™(1,&)/3,&) = 0} € %(&)
if (2,0:p7%0) (1, —al™(1,)/3,8) #£0 in 1,
where Q; is a compact complex neighborhood of [0,d;]. Since, with C > 0,

|(2i0ep" ) (1, —af (1,6) /3, )]

< Chy(t,—al™ /3,& PR 21E| for (1,€) €[0,61] x T; with [¢] > 1,
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Lemma 2.1 and (2.25) give
(2.26)  sub? a(Pf*kv)(z,r,é)r{{ko}(z,f,g) =0(t,7,62% (mod (L-2)) at 2°
for (1,&) €[0,61] x T; with |&] > 1,

which proves the assertion (ii). O

3. Proof of Theorem 1.2

In this section we assume that the conditions (A-1), (A-2), (H) and (T) are
satisfied. In order to prove Theorem 1.2 we first derive energy estimates for each
factor in (2.4). Fix j with 1 < j < Ny, and define

' m—1
pO(t,7,8) = dlp(t,7,8) = (mni' i Hl(r —20) (1<i<m-1),
u=
p-/’k(l)(l, T, f) = 8£p'/7k(t7 Ty f)
i k)—1
:(m( H D)) (1<l<m(jk) —1)
n=1

for (1,&)e€[0,6)xI; with [£]>1 and 1<k <r(j), where p(t,1,¢) =
[Limi(t = 24(2,€)) and Pkt 8) = H'" ]k( - ii’k(t, £)). Here, by Lemma 2.2
we may assume that the A,(7,<), 4, Dz, ¢), )bz’;’k(t,f) and }vé’k(/)(t,é) are real
analytic in 7€ [0,0;]. We write, for 1 <k <r(j),

I, 8) = 11 (v = 22K(1,8)) if m(j,k) =2 or 3,
l<u<m(jk),u#l

Pl = 11 (r—L5(1,&) if i#1 and m(j,k) =3,
l<u<m(jk),u#il

PPVt 7,6) = 3(c = 2KV (1,¢))

if m(j,k)=3,/=1,2 and {/,u} ={1,2},
(B.1)  27Mt,70,8) = p)(t,1,8) — 5 0i0.p) (1,7, ) if m(j,k) =2 or 3.
Note that 2/¥(1,7,&) = pi*(1,7,&) it m(j,k) = 2.

Lemma 3.1. (i) (L-1) for [0,01] is satisfied if and only if there are symbols
b{:f(l,é) (1<l<m(jk)) and C>0 such that the b‘l/:f(t,f) are positively
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homogeneous of degree 0 in & and

m(j, k)

(3.2) sub a(P7%)(1,7,&) = b t 7, &),
[
(3.3) min{ rr}}%) [t —s], 1}|b BLo<C (1 <l<m(jk))

for (t,7,&) € ([0,01\2(&)) x R x (T, nS")

provided that 1 < j < Ny, 1 <k <r(j) and m(j, k) =2 or 3.

(1) Assume that (L-1) for [0,01] is satisfied. Then (L-2) for [0,01] is satisfied if
and only if there are symbols bﬁff(z, &) (I=1,2) and C > 0 such that the bé;f(l, &)
are positively homogeneous of degree 0 in & and

3
1052 (t,7,¢)

sub® a(P7%)(1,7,&) =

O\I>—*

+ b,kzé Wt 7,8,

HMN

(3.4 min min |1~ o 1}|b£;5‘ alzc (=12

for (t,7,&) € ([0,61\%(&)) x R x (T;nS"1)

provided that 1 < j < Ny, 1 <k <r(j) and m(j, k) =3.

Proor. Since

hm(]k (tfép Z [Téz

if 1<j<Ny,1<k<r(j) and m(j,k)=2 or 3,

(2.18) and Lemma 2.5 of [S5] with r = m(j, k) prove the assertion (i). Let us prove
the assertion (ii). Assume that 1 < j < Ny, 1 <k < r(j) and m(j, k) = 3, and put

S(65,8) = sub? o(PH)(15,8) 3 2 (1. (& — (@ (6:9)/3)).

Note that 812q*]"’k(t7 7,£) does not depend on 7. f(¢,7,&) is a polynomial of 7 of
degree 1 and positively homogeneous of degree 1 in (7,&). Then we can prove
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that, with some Cj,C; > 0,

(3.5) min{ min |t—s| }|f(t7 ,8)| < Qi (1,7, & pP k)1 >

seR(E
for (¢,7,&) €10, ]xRx(FﬂS"l)

if and only if

mm{ min |z — |7, l}f(t —a{’k(l,f)/37f)|

R
< Cohy(t,—al™(1,8)/3,&; p"*)'2 for (1,€) €[0,01] x (T;nS"").
Indeed, we have
f(670,8) = £t —al (5,8)/3,8) + (t+ af “(,8)/3)0.f (1,7,¢)
= [(t,—al"(1,6)/3,8) + Ol (1,7,& p'*)'?).

By (2.4) of [5] we have

hl(tvfaé;pjvk) < hl(tafvé;qu

i trf

| —
l\JI'—‘

We have also

@ — (af*(1,¢)/3)
| 3
:317 (1,7, *_al Z

I=1

v —a3' (s,

+1g @ (6.3 "o () - p V(0,70

22a} (1,7, (& — (@ (1,0)/3)) = 3224k, (1 2,)

+ O (1,7, & p/FD)1/2),
Since
f(t,—al™(1,)/3,&) = sub® a(P/F) (1, —al*(1,8) /3, &),

(2.19), (3.5) and Lemma 2.5 of [5] with r =2 prove the assertion (ii).
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We assume that the hypotheses of Theorem 1.2 are fulfilled. Now let us
repeat the same arguments as in §2 and §4 of [5]. Assume that 1 < j < Ny and
1 <k <r(j). It is easy to see that

(v = 27%(1,)) 0 2/ K (1,7, 8)

= pM(1,7,8) —%@@p-”"(maf)

——Za (1,6 = 341 9) - p,#wf)——az 2l (1,7,8)

/Hél
for 1 </<3 and (,7,&) €[0,6;] x Rx I[; with [£] > 1
if m(j,k)=3. So we have
(3.6)  (z=2"(1,9) 02 " (1,7,¢)
= p"(1,7,¢) _,5 Dep” (1,7, 6) —76,62 7K (17,8
i

=3280 (6.8 = 1 (1, 9) - pl (1,7,€)

Wzl

R0 - M 0) + G0 - 7 ,0)

for 1 <7<3 and (1,7,¢) €[0,01] x R x [; with [&] > 1
if m(j,k) =3, where {/,u,v} ={1,2,3}. We have also

(=" (1.9) o pf (1.7.0)
= pH(15,8) = 500 (1,5,8) ~ AT (1,6) — 4 (1,)

for /=1,2 and (t,7,¢) €[0,61] x R x [; with [£] > 1

if m(j,k) =2, where {/,u} = {1,2}. Moreover, we have

(3.7) (v = 27" (1,8)) 0 pI M (1,7, 8)
3 .
IR O EP o)
y=1

i m(jk) =3, 1=1,2, (t,1,6)€[0,0]) x Rx T, | >1 and {,u} = {1,2}.
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(I) Let consider the case where 1 <k <Ny, 1 <k <r(j) and m(j, k) =3.
Define

R E D SR Ot (s s Vs

seA(S/1ENNN0,61+1]

+ 0 {0 (2,8) — A (e,€))7 + 1}

I<l<p<3
< {0758 = 2R o)t + 1y 41,

R R D A € (N R A ) [ A GRS R A (RS s Vi

I<l<u<3

+ 10,3 V@, &) = 2PV @, o1V (1,6) — V@ o)+ )7
A"k(t7é;y)=J0(WJ’k( E9) + WK (5,6) ds

for (t,¢&) € [0,01] x (TAA7F) with |¢[ =1 and y =1, where A4/* = 43(p)U
N (pPFY U {0} and <&, = (¥ + 1€[%)Y2. 1t follows from Lemma 2.2, Lemma
2.4 of [5] and Theorem 1 of [4] that there is Cy > 0 satisfying

(3.8) 0 < AP(1,&9) < Co(log(ey, +1)
for (¢,&) e 0,61] x (T\A7%) and y>1. For (£,¢)€[0,01] x (T;\A7*) with
Il >1, A4>1 and v(t,¢) € C*([0,01]; L*(R")) we define
3
", &vip,A) =D e AN k2 +Z Wik (e, &) e N ) Dy
=1 =1
+ WP &) e N ol

where A7F = APK(1,¢19), 2/F = 2751, D,,¢) and p/™" = p/*V(1,D,,¢). Then
we have

(3.9)  D&M(1,& w37, A)

3 i , ik . — 7
=i Y AN N |22 1 2 Im{e N (D2 ) - (2K o))
=1

. 3 — k i k(1
+i S [(AWIRVPNGE — 2wk Wi ke AN pi iy 2

—
I ¥
-

i kN2 — Jk j k(1 k(1
+ 2 Im{ (W) 24 (D p Vo) - (pi )y
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iAW N — 4R W e AN o
+ 2 Im{(WJ") e (D) - 3},

where AJF = 0,NK (1, ) and WK = 0, Wi (1,&;7). Since the 2/ (1, &) and the
” K (t £) are real-valued, it follows from (3.6) and (3.7) that

(310) Im{e= N (D) - (7F0))

— Im{e—AAﬂk((Dr _ ﬂ'l/’k)%j"kl)) . (%/kv)}

o e (S ) R e

— Im{e A (0262974 (1, Dy, E)0) - (7F0)} /6

_ Re {eAA/="' Z(}'ljtk . ll{_}k)(p]{’:;v) A (%jykv)}/z

u#l

- Im{e/‘“k > Ot = Ao (?/’/ﬁ"v)} / 6,

u#l
(3.11) Im{(W({,k)Ze—AAch(Drpﬁk(l)U) . (plj,k(l)v)}

. o o —
= Im{(W({’k)ze ANT(D, i ( >)p/] <1)1;) (p] k(l)u)}

3 -
= Y- tm{(Wgh) e A (k) - (pf )

=1

i,k — ik i,k i, k(1 ik
—3Re{ (= 1) (WJ*)2e N MY 2 E Do (p] o)y 2,

(3.12) Im{(W/*)*e " (D) - {i (WL Kyte AN (plk 1y .v}/6,

=1

where i/ = i[*(1,&), 2" =0l (1, ¢), WF =t (1.8), ply = pli(t, D &)
and so forth. Put

f;(l, f) = Pj#k([u Dy, ¢&; g)v(l‘, f)?

1

tré qulré—i-r(lré)

=0
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and write
q{’k(nr,é)—i—r” (t,7,&8) = Zﬂl’ (1,&6)T

P18 8) = Blo (1,E) + Bl (1. G e),

where ﬂ,o(t &esSy 1+/([0,51] x ([;\{0})) is positively homogeneous of degree
(=1+17) in & and ﬁ k(1,8 eS[ﬁ*l([O,él] x ([;\{0})) uniformly in ¢ (/=0,
1,2). Note that

2
(3.13) “(1,8) =" Bl to
=0

2

k(T Ee) Zﬂlk

=
Since
0 W (1, &) < W En W (1,69) + V2 (1,9))
<2WPK(n,E PN K (1, Ey),
PP, D )o(t,E) = PPH(1, Dy, & e)o — ¢ (1, Dy, & e)o
= £(1,&) — ¢/,
(3.9)—(3.12) yield

0,875 (1, &0, A)
3(A) e N £ (1,6))

3
ZlA BATFe N |y
=1

2

. jrk e | : 1 i
— (AR Te N I (q"‘* +5(20p") + 2 (ﬁfafp"”‘)) v

_ j-k N
— (AT e NN Tt = A PUp el 4+ (W) |v|2/36}1
u#l

S8}

Jk 2 Gk —ANPKGk(1) 2
E Wi ") A e |p; v|
=1
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+2(W0/,k)2(Atj, -1 —A/\J {Zlyjkul +Z W/k)

«]k i]k |2|02}

— (A= B AN o +Z (W AP e p 0,
I=
where  (0,0.p/*) = (8,0.p"%)(t,D;,&),.... First assume that (¢,¢)e[0,51] x
(CAN5), el = 7= 1 and
3.14 min{ min |r—s|, 1 < <E>73.
(3.14) {seﬂl’(é/lc’)' | } &2

Then we have
Wit (t,&9) = (77 V2.
So we have, with some C > 0,

2
(Af k) 1 _AATK

i 1 5
(a7 + 5 @0 + g @30204) )0

1=1 =1

3 2 ) )
< C(AJF) e AA”‘{Z 2o+ Y p el + (de">6u|2}

3 2
ik ANk ik 2 jk\2y k(1) 2 jok\4. 12
< CAJ*e M {2)9/ o + 3w 1p Vo + (W)l }

=1 =1

since there are ¢/*(1,&;¢) € S{'(([0,01] x (T;\{0})) (#=0,1,2) uniformly in &
satisfying

(I‘j"k(lﬂa @8) +éafarp (1,7, é)"' at arp (Z’T’ f)

“(1,60 Z,@”‘mé)ﬂl’ (1,8 Zp’k“)tr,é)+c~2”"(t,é;e>-

Note that there is C > 0 such that
51,6 < Clé| for 1<1<3 and (£,¢) €[0,61] x T; with [¢] > 1

(see, e.g., Theorem 1 of [4]). Then it follows from (4.11) of [5] that, with
C >0,
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(AP e NN = AP Kol /4 + (W) /36)
u#l
j ke ,— AN : kN2 k(D)2 kN (2
< CAlTe” S O+ (W) el b (1 <1 <3),
n=1
3 . .
2 A) -AA”‘{ZW;/M+9<W{*">2x;”‘<‘> —z{vk<”|2|u|2/4}
n=1
v 3 ' _ 2
< CAtj’keAA]’k{Z |»J7§]’kv|2 + (W2 Z |Pﬁ’k(l)v|2}.
u=1 u=1
Therefore, there is Ay > 0 satisfying
(3.15) QBT (1, 039, 4) <31£,(1,9))
for e € (0,1] and 4 > A if (3.14) is satisfied. Next assume that (z,&) € [0,01] x

(TAANK), 1¢] =y =1 and (3.14) is not satisfied, i.e.,

mingy min |t—s[, 1, > =213,
{sewé/m' | } <

Then we have

(3.16) Wik, &) = (\/Emin{ min ]|t—s|,1})l.

SE@(&/‘QV|)Q[O‘(51+1
Operating 07 in the both sides of (3.2), we have
(3.17) 07 sub o(P7¥)(1,7,8) = 0%q) " (1,7,8) =2 bl (1,¢)
I=1

Since

00:pf (1,71,8) = =DM (1,9),

u#l

5%}

(3.18) > adpi (17,6 = 0,027 (1,1,8) = 20ia —2Zx

=1

0,0:p) F(1,1,8) — 0,027 (1,7,6) /3 = = (45K (1,6) — 4 (1,€))/3,

wn#l



34 Seiichiro WAKABAYASHI

Z‘1'6/6_(11 (76)/37

MN

=1
3
S 21,7, 8) = 0K (12,6 — 2027 (1,7,€)
=1

= 3722 4 2a] M (1, )t + af M (1,8) — i0,al F (1, 8),

)

T -Zgﬂ (,1,9)/3 —af*(1,6) > pI*V(t,7,¢)/9

=1
+2(al (1,)/3) +idial *(1,8) )3 — a}*(1,8)/3,

(2.20), (3.1), (3.17) and Lemma 3.1 give
. j . 1 .
¢ M (1 &) + 50,007 (17,8 + 2010 (1,7, 8)

15, o2pk(1,1,¢)

= sub o(P"*)(1,7,&) + ¢ " (t,7,&) + /¥ (1,7, & 8) + <

= " bli(t,9) {71 Ki,r,6) + (a ap) " (1,7,8) —%atafpj‘k(t,‘[,f))}
I=1

i . .
+ 150000 (1,7,.) - 020 (1,7, + ¢l F (1,7.9)

+= 6362 PR T, &) + B (1, Ee)e® + B8 E )T+ PR (1,65 e)

3
MG s>{ff" (.9 -l i{;”‘(n@)}

u#l

+ sub® a(P7*)(1,7, &)

3 .
+ﬁéz’f<r,s;e>{2 H65,0/3 = al* ()Y p V(0.0)/9

=1 =1

+2(af*()/3)* = al " () /3 +idal (s, é>/3}

=1

+ﬂl,1<z,é;e>{zp{="<l><t,né)/é—al (1, é>/3} IR &)
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3 .
=8 + B (1.8 ) /3)2) K (1,1,0)
=1
Zb VALK (2,6) = 35 (1,))
1 1 p#l

+ 3 (b3 (6.6) + BN, Ee) /6 — B (1, & e)al  (2,6) /9y MV (1,€)
=1

iR, & e),

where

7o (1 & e) = ﬂégé(r, ol (1,¢)
+ By (1, & 8)(2al M (1,9)/3)° = af (1,8 /3 + il " (1,6)/3)
— BN & e)al (1,63 + B (1. &)
€ S?’O([O,él] x ([;\{0})) uniformly in & (e (0, 1]).

Here we have used the identity that

3 .
sub? o(PHA)(1,5,8) = 56 S 715, + SR 90t (1.)
=0

2
+3 b6 p (1, 9),
=1

which follows from Lemma 3.1 (ii), (3.1), (3.13) and (3.18). By (3.3), (3.4), (3.16)
and (4.11) of [5] there is C > 0 such that

1 2

4| (g4 @)+ @) )o

i 3 . 2 . . .
< CAtj’keAA].k{ZL%],kU2+Z(W0j,k)2pl/,k(l)v2+(W0j,k)4|v|2}

=1 =1
for (¢,&) e [0,61] x (T;\ A7) with |¢] = 1 and ¢ € (0,1],

since
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b (1.6) < CW (&) (v=1,2),

(L5 (8,€) = A5 (6,00l < W (6,6 9) 2425 (1,8) = 4751, + Dol

A

< Wit (6 &0 (L8 DL E) = ] D)ol + Jof?)

2
<2 (&) (Z ool + |v|2>,
h=1

where {/,u,v} = {1,2,3}. Similarly, we have, with C > 0,

(A I*AA”‘ZZM — 2R PUpl ol /4 + (w1 /36)

=1 u#l

< AP AN SO A AP 4 ) o4+ (90l 36)

I=1 u#l
ik —ANIK - Pk /k Jo k(1) Jik
< CAJ*e S o127 o) + (W Z| o + (W20l
=1 1=1

e R e e e

8]

< 2Tk AN (k)2 Z JkM 129,

since

(A7 = 25 pl ol

2

=2/ 0 — 2)kv + — A

2(

<3{|9>fku| +|2lRo)? 2w k) <Z|p v|2/9+|v|2>}7

j k(1 i k(1 i,k e (
(a0 =i Wy = (pp*V = pf /3.

Therefore, modifying A4, if necessary, we can see that (3.15) holds for (z,¢) €
[0,01] x (T\ A7) with |¢] =1, e€(0,1] and A > 4y. This gives

(3.19) &K1, E vy, A) < VR0, & 05y, 4) +3 Jt 1£,(s, )| ds
0



On the Cauchy problem for hyperbolic operators I 37

if 4> Ao, (t,¢)€[0,61] x (TA\NPF), |¢] =y =1 and e e (0,1]. We note that 4
and Cy in (3.8) depend on P/*(¢,7,¢&:e).

LEmMMA 3.2. Assume that 1 < j < Ny, 1 <k <r(j) and m(j, k) =3. Then
there are ¢ >0 and Cy > 0 such that

2
67K (1, &0y, 4) <Y KEOTHIDIo(t, &P < CLEFACET (1,8 057, 4)
=0

for (t,6) e [0,601] x (TANPR) with |&]|=y=>1, ee(0,1] and ve C*([0,0];

Proor. We can write

3

1
D2u(1,8) :%Zg/, (1, D, E)o(t,) + > a(t,E)Dlu(1,¢) +36,a1 (1, 6) - u(t, &),
1=0

I=1

where |¢;(z,&)] < C|¢]*. Similarly, we have

1< .
D(t,&) = ¢ > pi (0, D o(1,€) + MK (1, )0(1,€),
=1
where |d/*(1,&)| < C|&|. Therefore, we have

2
> <& Do, )
=0

3 2
- Ik apJ i,k Jrk s
< Oy AGe A {} 27 o+ (W p] “>v|2+<W5k>4|v|2}

=1 I=1
< C(EOTHOET M (1,& 059, 4).
It is obvious that, with C >0,

2
EPK(1,E vy, 4) < CY (T DIo(t,9),
1=0

since W({‘k(t, Ey) < C(@f,/}. O

LemMA 3.3, Assume that 1 < j < Ny, 1 <k <r(j) and m(j, k) = 3. Then for
uweN with > 2 and x e R there are v >0 and C, >0 such that
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u
(3.20) D ey plo(e, €|
[=0

2
< c,,{z (&t (ply) (0, ¢))?

1=0

t
+ J (EPHUA|PIK (s, Dy, Ee)o(s, €)|? dis
0

=3
+ 3 (@A DIPIk (1, D & e, é)z}
1=0

for (£,&) €[0,01] x (CANTK) with |&] =y =1, ee(0,1] and ve C*([0,0];
L*(R")), where Z,”;S =0 when u=2 and the v; do not depend on .

Proor. From (3.19) with 4 = Ay and Lemma 3.2 with 4 = A, it follows

that (3.20) is valid for =2 if v; x = A9Cy. Let M > 2, and assume that (3.20) is
valid for 4= M. Then we have

M+1

(321) Z <£>}2,M+2+2K721|D£U([, é)|2
1=0

2
< CM{Z <é>§M+2+2;c+4+v/;;\»721|(DIIU)<O7 f)|2

=0

t
+ J (@M pik (s, D & a)o(s, )2 ds
0

n=3
+ Z <é>fM+2+2K76721|D[1Pj,k<t, Dt7 é, 8)1)([, é)|2}

=0

+LEOTIDM (1, ¢))?
for (¢,¢)e0,61] x (TA\ANF) with || >y>1, e€(0,1] and ve C*([0,6];
L*(R™)). On the other hand, we have

Za (t,&8)Dyo(t, &) + PPE(1, Dy, & e)o(t, ),

where P/*(1,7, &) =2 + 37 al *(1,&¢)r> . By induction we can easily show
that for heZ, there are symbols al’;” (1,&¢)e 5,31;"—/([0,51] x (T;\{0}))

az' -
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(1=0,1,2) and b/""(1,&e) € SI4([0,61] x (T\{0})) uniformly in &e (0,1]
(0 <1< h) satisfying

Dy Zagfhh, 1,&€)Du(1, &) +Zb’k” 1,&e) D' PIK(1, Dy, & e)u(t, E).

This, with (3.20) for £ =2 and (3.21), proves that (3.20) is valid for u = M + 1.
O

(II) Next consider the case where 1 < j < Ny, 1 <k <r(j) and m(j, k) = 2.
Define

wikmen = Y0 O (- 57, + 1) 4,

s€(¢/1E)N[0,01]

Wi (t,€) = 10,05 (6,8) = 255 (L N/ (AP (1,€) — 2551, 8)] + 1),
A1, Ep) = J;(Wo(&f; 2+ Wi(5,0)) ds

for (,&) €[0,61] x (TA\A°) with || >1 and y > 1, where 4" = 45(p) U {0}.
Similarly, we have

0 (&)l < W (1),

0 < AM(1,&y) < Collogdéy, +1)

for (¢,&) € [0,61] x (T\AN) with [£] > 1, where Cp>0. For (t,¢)e(0,6] x
(CAA) with [¢] > 1, 4> 1 and (&) € C'([0,6,]; L*(R")) we define

e ” o
EE (1 & vy, A) =Y e N plRu W1, &) e N o,

2
=1

where A% = AK(1,&9) and p/* = p/*(1,D,,&). Then we have

2 . . k . —
DK (1, & vy, A) =i AN Fe™ N pf o 20 Tm{e= N (D, pf*v) - (pf o)}

AN )P 2w W e N fof?

+ 20 Im{ (W) 2e 4" (D) - B},
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where A* = 0N (1, &), W =W Ey) and W = o w ] (& ).
Put

Ji(1,8) = PP, Dy, & )o(t, )

P17, &e) = pP (1,0, 8) + P (1,1,8) + 1P (11, & o),
where ¢/%(t,7,&) € %}0([0,61} x (C;\ A7) is positively homogeneous of degree 1
for || > 1 and r/k(t,7,&5e) € %?671([0,(51] x (T\A")) uniformly in e. Then we

have

(322) a6 (1,859, 4)
2 p
< - Z AA/ ko= ANt pPj kU‘Z
=1

= 2Im{e™ N (D, = i) pl o (p]Fo))]

—{AN ) =25 *) e N o

2
- Im{(Wo""‘)ze”‘A/"k > oplte 17}

!

2 k
ANk
S—E:C AN

=1

j i,k k=1 £ ik Jk
ANl ol = (AT = 387K pf ol

) 2
—3(A0H!

t

(sub a(PP¥)(1,D,, &) + (— 1) (W j’k))v

=3P R | = LAN ROV = 2w ) ye N ol

. 1, ik :
+(Alj,k) (W/ k)2 —AA/"Z“)//CU‘ +§A{,/<(WO/4A)2€,AA/klv‘Z

o 2 . o
< 2N e N A 2 ST (A - 4 AR AN pl
=1
+ 12(/\{‘/()718—,4/\/% |Sub O'(P‘f‘k)v|2
AP e NG = Al 6(AFR) e N

— (A= S/2)AFR W) e AN o
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since

(= 45 (1,8) 0 pf*(1,7,0)
= PRt 0, &) — ¢ (t,7,8) — 17K (1, 1, E8) — idup] M (1,7, 8),
o i . . i .
—iop] ¥ (1,7,8) = (—1)156,(1-{”((17 &) = M1, 9)) —Ea,afp-/vk(z,f,@ (1=1,2),
Bk _ Lk sk _ gk Joky ik
where p;" = p/""(t,D, &), A" =477 (4,E), sub a(P)Y) = sub a(P)F)(t, Dy, &),

l{;’k = 6,/1/’]((@ &) and so forth. It is easy to see that

2
(323) (A (1.6) = K (e &)1 < 4N [pF ol + 2(A7F) o),
=1

2
(3.24) P51, Dy, & e)o(1,6)|F < C{W > Ipf ol + |v|2}
=1

for (¢,&) €[0,01] x (T\A) with || > 1 and ¢ € (0, 1],

where C > 0. First assume that

3.25 min m t—s, 1 < -1/2,
( ) {Se%(é/lé) N[0,61+1] | . } <£>}

Then we have

Wi (1, &y) 2 <N IV,
Therefore, there is Ay > 0 satisfying
(3.26) QBT (1, & vy, A) <2/ £(1,6))

for (¢,¢) € [0,01] x (TAA°) with |&] > 1, ee (0,1] and 4 > 4, if (3.25) is sat-
isfied. Next assume that

min min t—s|,1p > -2,
{se%/mm[omn]' | } 2

Then we have

-1
Wik (1,&;9) = (\/_mm{ min |t — s, 1}) :
se R(&/)1E))N[0,01+1]

Lemma 3.1 (i) and (3.22)-(3.24) prove that (3.26) is valid for (z,&) € [0,5,] x
(TAA) with |¢] =1, e€(0,1] and 4 > 4o, with a modification of 4, if nec-
essary. Repeating the same argument as in Lemma 3.3, we have the following
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LemMa 3.4, Assume that 1 < j < Ny, 1 <k <r(j) and m(j, k) =2. Then for
ueN and x eR there are vj; >0 and C, >0 such that

u
Z <é>}2’,u+2h‘72]|Dtlv(t7 f)|2
1=0

1
< C/{Z (O (Dl)(0, )

1=0
!

+ J (EPHr|PIK (s, Dy, Ee)o(s, €)|? dis
0

n—2

+ Y O DIPIN (1, Dy, & e)o(t, €)| 2}
=0

for (t,&)€[0,01] x (TANC) with |&]=y=>1, ee(0,1] and ve C*([0,6];
L*(R")), where Zl";oz -+ =0 when p=1 and the v; do not depend on p.

(IIT) Now consider the case where 1 < j < Ny, 1 <k <r(j) and m(j, k) = 1.
Define
(1, E v A) = e o(1, )|

for (¢,¢) €[0,6;] x I; with |¢] > 1, 4 >1 and v(,¢&) € C([0,61]; L~ (R")). Then
we have

D (1,8 ;. 4) = ide M |u(1, ) + 2 Tm{e™p o -5},

where p/k = pik(1, D, &) (= D, — A7*(1,&)). Applying the same argument as in
the proof of Lemma 3.3, we can prove the following

LemMA 3.5.  Assume that 1 < j < Ny, 1 <k <r(j) and m(j, k) = 1. Then for
uel, and x eR there is C, >0 such that

"
> (& Dlo(r, )
1=0
< C,,{<é>§”“"v<o, O+ L (EFEHIPIK (s, Dy, & 2)o(s, )| ds

pu—1
+ ) (& DIPIK (1, Dy, & e f>|2}
=0
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Jor (,&)€[0,61) x T; with |&|=y=>1, ¢e(0,1] and ve C*([0,6]; L~ (R")),
where Y47 ---=0 when pu=0.

Let f(t,x) e C*(R; #(RY)) satisfy supp f C {(¢,x) e RxR"; t >0}, and
consider the Cauchy problem

P(t,D;, Dy )u(t,x) = f(t,x),
u(t, x)|r<0 =0.

(cpy {

Put

-1
=Ty, rjzrj\UF/ (2 <j <N,
=1

No
4= U NI U A5 (p) U{0}.
1<k<r( (j,k)=3

=1 Jm
Let vo(1, &) (=0(1,¢)) € C*(R; #(RY)) satisty vo(1,&;¢)],.0 =0, and define

vkt (1,&8) = PP Dy & oo (n, & e)
for 1 <j< N, EeT\AN and 0 <k <r(j) — L.

Then it follows from Lemmas 3.3-3.5 that for 1 << Ny, 0<k <r(j)—1,
= m(j,r(j) — k), ke R and (1,8) € [0,61] x (FAN) with [&] =y > 1
Lot
S| o nluds sol
0

=0

u=m(j,r(j)=k) 1 ) s
<G Y J<f>f”+2x+v»"k721|D£vk+1(S,f;s)\ ds,
= 0

where C, >0, v, =0 if m(j,r(j) —k) =1 and V; x = v; ;- if m(j,r(j) — k) =
2 or 3, since

(]} s oras) as = [[([ ot an )

= (= oot v <o [ Jats. )1 o
0 0

for ¢t €[0,0,]. This yields
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o

t
3 J (&M DIy (5 & )| ds
0

=0
~— [ 2u+2K=21+v 2
<Gy | P IDln 5. Go) ds
=0

for 1 < j< Ny, u=m, xeR and (¢,&) € [0,6,] x ([\A) with |¢] >y > 1, where
C, >0 and v =max;<;j<n,(Vj,0 + Vj,1 + -+ ,(j)-1). By (2.4) we can see that
there are C >0 and Cy >0 (N =0,1,2,...) satisfying

m

> JO (&2 Dlo(s, &) ds

=0

<C J (EYPMI|P(s, Dy, & e)u(s, €)| ds
0

m—1 pt
+ CN Z JO <f>fm+2k72/7N|D§U(S, é)‘z ds

1=0

for keR, (1,¢) €[0,01] x (R"\A) with || >y>1 and N =0,1,2,.... There-
fore, taking y, = 2C; and modifying v if necessary, we have

(3.27) > J; &yt plu(s, &) ds

1=0

< ZCJt <é>§m+2/c+17|1)(s7 D37 f; E)U(S, é)|2 ds
0

for v(t,¢) € C*(R;.#(RY)) with v(1,&)],.o =0 if keR, (1,&) €[0,6] x (R"\A),
g€ (0,1] and |&] =y = 9.

LemMa 3.6.  There are C, >0 (u>m) such that
"

(3.28) > J; & Dly(s, &) ds

1=0

p—m ot ~
<G> JO (P2 DIP(s, Dy, & e)u(s, €)| ds
1=0

Jor u=m, keR, v(t,¢)e C*(R; L (RE)) with v(t,&)|,.o=0, (£,¢)€0,01] x
(R™\A) with |¢] =y =y, and ¢ (0,1].
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ProOF. Let M >m, and assume that (3.28) is valid for u= M. We
have
m=1
Mo(1,E) == ami(1,&€)D]u(1, &) + P(1, Dy, & £)o(1, ),

=0

where  a;(t,&38) = 30, <panq(;6)C" € S{,O([O,él} x R") uniformly in ee (0,1]

(1 </ < m). By induction we can easily show that for 4 € Z, there are symbols

al (& €) e SP"([0,61] x R") and bf_,(1,&6) € S[57([0,61] x R") (0 <1<

m—1,0 < v <h) uniformly in ¢ € (0, 1] satisfying

m+h
D t

Zam (1, e)D!o(t, &) +th (1, e)DP(t, Dy, & e)u(1, &).

=0

This, with (3.27) and (3.28) for u = M, proves (3.28) for u= M + 1. O

(IV) Let us derive energy estimates for |¢| < y. Define

._.

m—

O(t,& vy, 4) =Y e ME D1, ¢))?
1=0

for (¢,&) €[0,0,] x R" with |£] <y and v(¢,&) € C™([0,01];

L*(R")), where 4 > 1
and y > y,. Then we have

m—1
EO(1,E vy, A) =Y ide T |Do(t,&)|* + 2ie~* Im{D}"v - (D" Tv)}

m—2
+) " 2i¢Eym e M Im{ D} - (D]v)}.
1=0

Since P(t,7,&¢) — 1" € Z%_I’I(R x R") uniformly in ¢, there is Cp > 0 such that
6,8°(1,& 077, 4) < 4471 |P(1, Dy, & e)o(r,€)
if 4> Cyy and |¢] < y. This yields

m—1
Z <£>}2ym+2/c7272l|Dl/U([’ f)|2
=0

m—1 t
< Cy{lz; &2 (Dl) (0,8)) + L (EF|P(s, Dy, & e)u(s, )| dS}
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for (£,¢) €[0,0;] x R" with || <y, ¢€(0,1] and v(z,&) e C™([0,5,]; L*(R")),
where C, is a positive constant depending on y. Similarly, for 4 > m — 1 there are
Cyu>0 (u=m—1) such that

u m—1
S @2l o) < cw{Z (&2 (D])(0,¢)
1=0 1=0
+ j (PR P(s, Dy, & e)v(s, &) ds
0

+ ”ff (&2 DIP(1, Dy, & e)olt, é)z}
=0

for (£,£) €[0,0:] x R" with |&] <y, ¢€(0,1] and v(z,&) e C™([0,5,]; L*(R")),
where >, 10 = 0. This, together with Lemmas 3.3-3.6, yields the following

Lemma 3.7. There are ypy=1, C,, >0 (y =y, u=m) and vy >0 such
that

u
(3.29) Z <D A" Dlu(t, x)||i2<[o,fsl]xn“)
1=0

u—m
< Cy,,u Z ||<DX>;J+K—I‘)1—I+VOD{P(Z, D, Dy; S)H(Z, x)”i%[()ﬁ,]xk")
=0
if w=m, y>vy, e€(0,1] and u(t,x)e C*(R;H*(R")) with u(t,x)|,.o =0.
Here H*(R") denotes the Sobolev space of order s and H* (R") = (,.g H*(R")
and

1/2
Hf([a x)||L2([07(51}XRn) = (J ‘ |f(l‘7 x)|2 d[dx) .
[0,6;]xR"

REMARK. (3.29) is valid, replacing P(t, D;, Dy;¢) by P(t,Dy, Dy).

Let f(t,x) € C*([0,00); H* (R")) satisfy (D! f)(0,x) =0 for j e Z,. Then, it
follows from the unique existence theorem for ordinary differential equations and
the proof of Lemma 3.7 with P(¢,D,, Dy;¢) replaced by P(t,D,,D,) that the
Cauchy problem

(CP), {P(L Dy, Dyju(t,x) = f(1,x) in [0,6] x R,

DIu(t,x)]cg = 1(x) in R" (0<j<m—1)
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has a unique solution u(z,x) e C*([0,0;]; H*(R")). We note that (CP), has a
unique solution u(t,x) € C*([0,0,]; H*(R")) even if P(t,D,,D,) is replaced by
P([a Dl‘va;g)'

Lemma 3.8. Let ue C*((—o0,01] x R") satisfy u(t,x)|,.o=0, and let
(to,x°) € [0,61] x R". Then (ty,x°) ¢ supp u if

(3.30) K-

(to,x

o, (1supp P(t, Dy, DJu = 2.

Proor. We extend u(z,x) to a function in C*(R""!). Choose R >0 so

that
K(;o X

Assume that (3.30) is valid. Let ®(¢) be a function in &{*}(R) satisfying

®(t):{1 %f 1<3/2,
0 if r>2.

0) C {(I,X) S [0,(51} x R"; |x| < R}

Put
Fr(t,x) = O(|x| = R)P(t, Dy, D)u(t, x) + [P, O(|x| = R)Ju(t, x),
where [4, B = AB — BA. Then we have
P(t,D;,D,)(®(|x| — R)u(t,x)) = Fg(t, x).
Note that Fg(#,x)|,.o =0. It is easy to see that there is a unique solution

vr(t,x) € C*((—o0,01]; H?(R")) satisfying

(CP)R {P(ta Dz,Dx)UR(t,X) = FR(I,X) n (_00751} % Rn,

UR(tv x)‘t<0 =0.

Therefore, we have vg(t,x) = O(|x| — R)u(t,x) for te (—o0,6,]. Choose p'(f) e
gH(R) and p”(x) e 61N (R") so that p'(£) =0, [* p'()dt=1, suppp' C
{teR;0<1 <1}, p"(x) =0, [gp"(x)dx =1, supp p" C {x e R"; x| < 1}. Here
we say that f(x)e&U}(R") if for any 7 >0 there are #>0 and Cr >0
satisfying

|0 f(x)] < Crh™(ja|!)*  for we (Z,)" and x e R" with |x| < T.

For ¢ > 0 we define

Fru(t, %) :J

o P (L= 90 (= ) Fr(s, y) dsdy,
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for (1,x) e R"™, where p!(¢) =& 'p'(t/e) and p”(x) = & "p"(x/e). Then we have
Fr.(t,x) € &N (R™1) and
supp Fr..(t,x) C {(t,x) eR"'; >0 and |x| < R+2+¢}.
Moreover, we have
Fr.(t,x) — Fr(t,x) in C*(R;C;(R")) as ¢ 0.

It follows from [3] that the Cauchy problem

Pt?D,Dx;g UR,I; t,-x :FR71; t,x ln Rn+1,
(CP)g., {(f Joro(1,X) = Fr.o(t,)

UR,a(tv x)|r<0 =0

has a unique solution wvg,(¢,x) in &} (R"!) and that (f,x°) ¢ supp vg, if
supp Fr.NK

(o.x0) = 8- More precisely, we have

supp vg. C {(t,x) e R x R"; (t,x) € K&y) for some (s, y) € supp Fgr .}

For ¢,¢ € (0,1] with ¢’ <& we put wr . (t,x) = vg.(t,x) —vg o (t,x). Then we
have

P(t7 Dt7Dx;8)WR,é;,8’(t7x) = FR,S(tvx) - FR,S’(tvx)

m

+3° 3" (@ult;e) = a0(6:6)) D" Dlvg o (1, %)
J=3 |o|<j-3

Applying Lemma 3.7 we can see that there are C, >0 (u > m) satistying

u
(331) KDL DI oo (6,3) 120,60, xr7)
=0

K—m—I+v 2
<C [{Dx>5* 0D (Fr o1, x) — Froo(t, N z20,61xr7)

pu—m
0
0

=

2
+ sup  Df(ap(1iE) — ap(t;0))]
t€(0,01],3<j<m
Bl <j-3,h<p—m

H—m

% Z ||<Dx>ﬁ+'(7”17173+2mD,[FR,S’(t7 x)||1242([0’51]an>
=0

for u e N with u > m and x € R. Indeed, we also apllied Lemma 3.7 to vg (¢, x)
in order to obtain (3.31). (3.31) yields
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vR.:(t,x) — vr(t,x) in C*([0,0,]; H”(R")) as ¢ ] 0,
supp vg N (—00,d1]
c {(¢,x) € [0,0;] x R"; (2,x) ngy) for some (s, y) € supp Fr}.

Since
supp[P,O1(x] ~ Ru(1x) € { (1) € [0.00) xR R+ < o] < R+2},

we have
K, x0) Nsupp Fr = ,

which proves (¢, x°) ¢ supp vg and the lemma. O

For f(t,x) e C*(R"™) with f(t,x)|,.o =0 we consider

P(t,D;, Dy)u(t,x) = f(t,x) in (—o0,d;] x R",

( )‘z<0

Put fz(t,x) = O(]x| — R)f(t,x) for R > 0, and let ug(¢,x) be a solution to (CP),
with f(¢,x) replaced by fr(¢,x). Then we have

(cpy; A

P(t, Dy, Dy)(up (1, x) = ug(t,x)) = (O(|x| = R) = O(|x| = R))f (£, x),

where R’ > R > 0. Define

M5| = sup MJ(Z7 f)|,
1el0,60,),1<j<m
éesn—]

Ky = {(t,x) e R"™; 1 = |x|/ M5, }.
It is easy to see that

K+

(9, x°)

N[0,61] x R" C {(to,x")} + Ks,.
Lemma 3.8 implies that

Ur+o My, (1, X) = Urriou, (%) if <01 and x| < R< R’
Therefore, we can define u(z,x) by

u(t,x) = ugiom; (1,x) for 1 <d; and |x| < R,
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and u(t,x) (e C*((—o0,01] x R")) satisfies (CP);. Repeating the same argument
as at the end of §2.3 of [6], we can construct solutions to the Cauchy problem
(CP) with [0,00) x R" replaced by [0,0,] x R" when f(¢,x)e C*([0,00) x R")
and u;(x) e C*(R") (0 < j<m—1), and finally we can complete the proof of
Theorem 1.2.
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