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ON THE CAUCHY PROBLEM FOR HYPERBOLIC
OPERATORS WITH TRIPLE CHARACTERISTICS
WHOSE COEFFICIENTS DEPEND ONLY ON
THE TIME VARIABLE II

By

Seiichiro WAKABAYASHI

Abstract. In [11] we considered the Cauchy problem for hyper-
bolic operators with triple characteristics whose coefficients depend
only on the time variable. And we gave sufficient conditions
for C* well-posedness. In this paper we shall show that the suf-
ficient conditions given in [11] are also necessary under additional
assumptions.

1. Introduction

In [11] we investigated the Cauchy problem for hyperbolic operators with
triple characteristics whose coefficients depend only on the time variable. And we
gave sufficient conditions for C* well-posedness. This paper is the sequel to [11],
and we shall prove that the sufficient conditions given in [11] are also necessary
if the space dimension is less than 3 or if the coefficients are semi-algebraic
functions of the time variable. Here we say that A(¢) is semi-algebraic if A(¢) is
defined in a semi-algebraic set U in R and its graph {(z,(1)) e R*; te U} is a
semi-algebraic set (see, e.g., [13]). For basic properties of semi-algebraic functions
we refer to [13] and [14].

Let m e N satisfy m > 2, and let P(t,7,&) =" + 307, D hl< aj, (1)t x &
be a polynomial of 7 and & = (&,...,&,) of degree m whose coefficients a; (1)
belong to C*([0, o0]). We consider the Cauchy problem
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(CP) {P(l, Dy, D,)u(t,x) = f(t,x) in [0,00) x R",

DIu(t,x)] .y = 1(x) in R" (0<j<m—1)

in the framework of the space of C* functions. For notations and terminologies
in this paper we refer to [11]. Put

Ptmd) ="+ 33 4 IE (= Pu(tn, ),

=T o=

m

Ptt. ) =Y Y agaTE (0<k<m-—1).

Jj=m—k |a|=k+j—m

We assume throughout this paper that the following conditions (A), (H)" and (T)
are satisfied:

(A) a;,(t) (1 <j<m,|a|=j,j—1,j—2) are real analytic in [0, 00).
(H) p(t,7,¢) is hyerbolic with respect to 9= (1,0,...,0)eR""! for re
[0, 0), ie.,
p(t,t—1i,&) #0 for any (t,7,€) €[0,0) x R x R".
(T) The characteristic roots are at most triple, i.e.,

agp([af7£) #0 if ([,‘L’,é) e [()’ OO) x R x Snfl and

p(t,7,8) = dup(t,7,&) = 02p(t,7,&) = 0,

where §"7! = {¢ e R"; |¢| = 1}. From (A) there are a complex neighborhood Q
of [0,00) (in C) and dyp > 0 such that [—dp,0) CQ, QN{leC;Re A< T} is
compact for any 7 > 0, and a;,(f) (1 < j <m, |a| = j) are regarded as analytic
functions defined in Q. Write

m

p(t,7.8) = [ [ - 44(1.))-

Jj=1

Put

(1, 6) = (Oy(1,8) = (1,€)*, M = (’;)

and define {D;(t,&)}, -,y by

M
TM+ZD1([7 é)TM7[ = H (T+Juj,k([a é))
=1

I1<j<k<m
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We note that Dy (t,&) (= D(t,&)) is the discriminant of p(f,7,&) =0 in 7.
Putting Dy(t,&) = 1, for each & e S"7! there is r(&) € Z, such that 0 < (&) < M
and

m(t,8) = =Dy 1 (1,$) =0 in 1,
DM,,.(C)(Lf) %20 in t.

It is easy to see that

Dy 7( (Z é) H :uj,k(tvi),

1<j<k<m
1y 4 (,$)#0 in 1

r(&) =#{(,k); 1 <j<k<m and p (£,¢) =0 in ¢}.
We define
R0(&) ={(Re 1),; A€ Q and Dy, (4,&) =0} for Ee ",

where a; = max{0,a} for a € R. By Lemma 2.1 in [11] we may assume that for
any T > 0 there is Ny € Z, satisfying

#(B(E) N[0, T]) < Ny for Ee S,

modifying Q if necessary. To describe conditions on the lower order terms we
define the polynomials 4;(¢,7,¢&) (= hi(t,7,&; p)) of (7,&) by

\p(t,7 — iy, &)|* = Zyzjhm,j(t,r,f) for (1,7,&) €]0,00) x R x R” and y e R.
Since [p(t,7 — iy, E)* = I/, ((r — 4(1,8))* +7?), we have

(1.1) h(t,7,&) = > H (8 (1 <k <m).

1<ji<p<-<jr<ml=

The subprincipal symbol of P(¢, D, D,) is defined by
sub 0(P)(1,7,&) = Po1(1,7,6) +50,0:p(1,7.8).

To describe the Levi condition on the (m — 2)-th order terms of P we have to
define some quantities. Let z° = (19,79, ¢°) € [0, 00) x R x 877! satisfy (0%p)(z?)
=0 (0 <k <2). Define a monic polynomial p(t,t,&;z°) of © of degree 3 sat-
isfying the following:
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p(t, 7, & 20 is defined for (¢,¢) e #(z°) and p(t,7,&) is divided
by p(t,7,&; 2% as polynomials of 7, and, putting p(¢,7,&;2%) =
pt,7,8)/p(t,7,&:2°),
tel(z®) if (t,&) eu(z°), |E] =1 and p(t,7,&2°) =0,
p(t,7,&2% #0 if (1,8 eu(2°), ¢ =1 and e I(z°),

where %(z°) is a neighborhood of (5,&%) and I(z°) is a neighborhood of 7.
Then we write

p(ta T, é) ZO) = ‘[3 +a (ta év ZO)TZ + aZ(t7 éa ZO)T + a3(ta év ZO)'

We define
1 -
(12)  Q67.&2") = Pua(t,7,) + 0 00p(1,1.6:2°) - p(1,7.6:2°)
1 -
+Zata$p(t7 Ta év ZO) : atp(t7 ‘[75;20)

n 1’—253 sub a(P)(1,7,€) - 9,02p(t, 7, & 2°)

b (@2p(t 5,620 0.p(1,7, &)
for (t,&) e #(z°) and 7 eR.

We note that

(1.3)  0(t,7,&2%) = Pi(t,7,&) + éafafp(z, 7,8) + éafpz(g 7,8) - 0,0%p(t,7, &)

when m = 3. In [9] we defined the sub-sub-principal symbol sub? o(P)(t,,&) of P
by the right-hand side of (1.3).

THEOREM 1.1. Assume that n <2, and that the conditions (A), (H)' and
(T) are satisfied. If the Cauchy problem (CP) is C* well-posed and has finite
propagation property, then for any compact interval I C (0, 00) the following Levi
conditions (L-1); and (L-2); are satisfied:

(L-1); There is C >0 such that

min{ min_ |t — s, 1}|sub a(P)(t,7,%)|

‘YG;%()(C'“)

< Chy1(1,7,6)"* for (t,1,) eI x R x 8",
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(L-2); For any z° = (19,70,£%) € I x R x 8" ' with (0*p)(z°) =0 (0 < k <2),
there are § > 0, a neighborhood U of £° and C >0 such that

min{ i z—s|2,1}|Q<z, (1,6 2%)/3,& 2]
seAy(&)

< ChmfZ([; _al(t; éa ZO)/37 é) 172

for (1,&) e (INto —d,10+9]) x ("' N V).

THEOREM 1.2. Assume that the conditions (H)', (T) and the following con-
dition (A)" are satisfied:

(A a;,(t) A <j<m,lo|=j,j—1,j—2) are semi-algebraic in [0, c0).

Then the conditions (L-1)o 1) and (L-2)j, 1) for any T >0 are satisfied if the
Cauchy problem (CP) is C* well-posed and has finite propagation property.

The remainder of this paper is organized as follows. In §2 we shall give
preliminary lemmas. We shall prove Theorems 1.1 and 1.2, applying the argu-
ments as in [4] (see, also, [12]). In §3 we shall construct asymptotic solutions for
triple characteristic factors. For double characteristic factors we shall construct
asymptotic solutions in §4. In §5 we shall prove Theorem 1.1. Theorem 1.2 will be
proved in §6.

2. Preliminaries

From the assumption (T) there are d; > 0, Nyp € N, m(j,k) € N, open cones
T in R"\{0}, r(j) €N, compact intervals J; x and Pl T, é) e %%(]’k)([o,él] X
(T;\{0})) (1 <j <Ny, 1<k<r(j)) such that m(j,k) <3, the p/*(1,7,&) are
monic polynomials of 7 and positively homogeneous of degree m(j, k) in (z,¢) €
R x (T)\{0}) such that JY¥, I; > S"!, J;xNJ = for 1 <j<Npand I <
k<1l<r(j),

r(J)
@1 pt7O)=]]r"* (178 for (1,7,8)€(0,0] xR x (T;nS"),
k=1

tedi if 1<j<Ny, 1<k<r(j), (£,9)€[0,0]x (NS "), 7eC and
pik(t,7,6) =0, and for each (j,k) with 1 <j< Ny and 1 <k <r(j) there is
(£,&) e R x (T; N S"1) satisfying

(afpﬂk)(oa T, é) =0 (0 Sus m(]a k) - 1)
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We write
m
plt.7,&) = [[ (e — a6, ),
I=1
m(J, k
plk (t,7,¢) =
=1

Fix j so that 1 < j < Ny. For (1,¢) € [0,8] x (T\{0}) we write
PR, E) =B 4 al M (4,6 + af (1,8 + alF (1, 8),
P, E) = phi( T —al M (1,6))3,8) = © — al k(1,6 + al k(1,6
if 1 <k<r(j)and m(j,k)=3,
PR, E) = P+ al M (1, Ot + al K (1, 8),
PR E) = phR(n T —al(1,8)/2,8) = — 4y (1,9)
if 1<k<r(j)and m(j,k)=2.

Then we have

) (1,8) = a*(1,6)*/3 — a}*(1,9) (2 0),

al*(1,6) = 2al"(1,8)* )27 — al " (1,)ad " (1,8) /3 + af (1, )
if 1 <k<r(j) and m(j, k) =3,

ay"(1,6) = al*(1,8)7 /4 — af*(1,¢)
if 1 <k<r(j) and m(j,k)=2.

Until the end of the proof of Lemma 2.3 we omit the subscript j and the
superscript j of [, P/%(-), p/*(-),..., and “j of r(j), m(j,k),... and so forth.
Namely, we write [;, P/%(.), p/ k(), r(j), m(j,k),... as T, PK(\), p*(), r,
m(k),..., respectively. By (2.1) and the factorization theorem we have

(22) P(tafaf) = Pl(ta T, é) o PZ(Z,T,f) ©:--0 Pr(l7 T, é) + R(I,T,é)
for (1,¢) €[0,6,] x T with |&] > 1, where

PX(1,7,8) = pX(t,7,8) + gk (1,7,8) + qf (1,7, &) +r¥ (2,7, &),

qr(t,7,¢) e yf"o(k)*l’fl([o,él] x (F\{0})) (/=0,1) are positively homogeneous of
degree (m(k) —1—1) in (r,¢) for [&|>1 and rk(z,7,&) e "9 7172((0,61] x
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(T\{0})) (1 <k<r) and R(t,7.&)e A5 7 ([0,61] x (T\{0})) (see, e.g.. [S]).
Here we denote by a(t 7,&) 0 b(t,7,&) the symbol of a(Dy, Dy)b(t, D;, Dy). For
the definition of %”0“ (I xT) we refer to §2 of [11]. Moreover the rk(t,7,¢)
are classical symbols, ie., there are symbols rf(7,7,&) e fm ~([0,61] x
(C\{0})) (/e Z.) such that the rf(1,7,&) are positively homogeneous of degree
(m(k) —3—1) in (z,&) for |£] > 1 and

=

—1
(23) r*(6,1,8) = Y k(1,8 e O TEN(0,01] x (T\{0}) (N =1,2,...).

~
i
=

We write
(1,7,8) ~ ir t,0,8) in AN ([0,61] x (T\{0}))
=0

if (2.3) is valid. We also write
17" ((0,01] x (T\{0})) = {a(r,7, &) € 75" ((0,01] x (T\{0}));
a(t,7,) is a classical symbol}.
Define
pH(t 7. &) = ()" Oph(t, =7, =),
af (1,7,8) = (=17 gf (1, —7,-¢) (1=0,1)
for (1,7,&) €[0,01] x R x ((=T)\{0}).
Moreover, we define r*(z,7,&) e "™ 72((0,6,] x ((=[)\{0})) so that
(2.4) K(t,7,8) ~ f: R, 1, &)
=

in 9407 72(10,01] x ((~D)\{0})).

In fact, we can easily construct a symbol r¥(¢,7,&) for (t,7,¢) €[0,1] x R x
((=I)\{0}) satisfying (2.4). Note that r*(z,7,¢) is uniquely determined modulo

AT (0.01] x (FTIN0}). Put
PH(t,7,8) = pM(t,7,8) + qf (1,7, 8) + qf (1,7, &) + r*(1,7,€)
for (¢,7,&) €[0,01] x R x (FU(=I))\{0}). Then we have the following
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Lemma 2.1. We have
P(t,7,¢) = Pl(t, 7,8)o-- 0 P'(t,7,¢)
(mod "5 ([0,61] x (T U (—=T))\{0}))).

ProoF. Write

K(t,7,&) ~ ,Z::P’k (r,7,¢) in #750(0,61) x (TU(-D)N\{0}) (1 <k <),

where the Pf(t,7,&) are positively homogeneous of degree (m(k) —1[) in (z,¢&).
We also write

Pl(t,‘c,f) OPz(t,r,é) OPk t,7,&) ~ Zl “““ k (t,7,8)

in S ([0.01] x (T U (DN} (1 <k <),
where the Ill"2 """ K(t,7,¢) are positively homogeneous of degree (m(1)+--- +

m(k) — ). For example, the I,l’z(t,r,é) are given by

11172(&1,5): Z ﬁarpﬂ(t Taé)'Dtth(t’T’é)‘

hyu,veZ.
ht+utv=I

Then it is easy to see that

]1172(1‘5 va) = Z (_I)M(le( //l' (a P, )(lv -1, _é)(DthP\%)(L_n _f)
i

_ (—1)”1(1)+m(2)71111’2(l, —1, _é)
for (1,7,¢) € [0,01] x R x ((—T)\{0}).

Moreover, we can prove by induction on k that

for 2 <k <r and (t,7,&) €[0,61] x R x ((I')\{0}).
Since P(t,7,¢) is a polynomial of (z,&) and

P(ta T»é) - Pl(tvfa f) 00 Pr(tv Ty é) € %%*1,*00([0’51} X (_1:)\{0})1
(2.5) proves the lemma. O
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We write
g (1,7, &) = b§ (1, )T + bf (1, )7 + b5 (1,9),
ge(t,7 — af(1,¢)/3,8) = b (1, )7 + bf (1, )7 + b5 (1, ),
if 1 <k <r and m(k) =3. Then it is obvious that
by (1,¢) = by (1,¢)
bY(1,8) = bf(1,6) - al F(t,)b§ (1,9),

BE(1.8) = (1) + 5 ab(1,BE(1,€) — 3af (1,000 (1.8).

Let (&) be a set-valued function, whose values are discrete subsets of C, defined
for ¢ e S"~! satisfying the following:

For any T > 0 there is Ny € Z, such that
#{le R(); Re ie[0,T)} < Nr for eS™ L.

LemMMA 2.2, Assume that 1 <k <r and m(k)=3. Putting b(t,7,&) =

sub a(P*)(t,7 — ak(1,£)/3,&) we have the following:
(i) There is C; > 0 satisfying

(2.6) min{ m}{lv) |t —s], 1}|b(t, 7,8)| < Cilo(1,7, & pF)?
SER(C
for (t,7,&) €[0,0,] x R x (TNS™1)

if and only if there is Cy, > 0 satisfying

2.7) min{ min |7 5|, 1}b< @,/ )

seR(E)
< Gl (t, (a5 (z 5)/2)1/3 & Ak)l/z
(2.8) min{sg&) [t — s, 1}(571))(,, @, &)/2)',0)|

< Gy (1,0, p9) ' (= V2Crak (1,6)'?)

for (t,&) €[0,0,] x (CNS™ ).
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(i) (2.6) is valid if and only if there is Cs > 0 satisfying
(2.9) min{sg}}g) |t —s|, 1}|b(t, AX(1,8),8))
< Gilo(t,4%(,€). & p4)'2,

(2.10) min{ min |t—s|,1}|(31b)(f714k(175)»f)|
seR(&)

< C3hy (1,0, p5)' 1 (= V2C3ak (1,6)'1%)

for (t,&) €[0,6,] x (CNS"™1Y),

where
koo 1 if ak(1,8) =0,
fea={l, ] #(18) <0,
(2.11) AR(1,8) = vk (&) (ak(1,£)/3)" .

REMARK. Assume that m(k) = 3. Then we have
(2.12) hy(t,7,& p%) = ha(t,7 — a¥(1,8) /3, & pb)
=3¢+ ab(1,6)? — 6tas(1,),
h(t,7,& p%) = hy (1,1 — a¥(1,8)/3,& p*) = 322 + 245 (1, €).

Hyperbolicity implies that

(2.13) (@5(1,.9)/2)* < (@3(1.9)/3)",
and the discriminant D*(,&) of p*(z,7,&) =0 in 7 is given by
(2.14) D¥(1,¢) (= DX(1,¢)) = 4ak (1,€)° — 27a% (1, &),

where D¥(1,¢) denotes the discriminant of p*(¢,7,&) =0 in 7.

PrOOF. Write

3

PR = [ 2 (1.8), e,

=1

(6,8 =4 (1,9 +af(1,8)/3 (1<1<3).



On the Cauchy problem for hyperbolic operators II 61

Assume that (2.6) is valid. Then (2.7) is valid with C, > C). Fix (¢,&) € [0,0,] x
(TN S™ ). We first consider the case where A¥(z,¢) # 15(17 & for 1 <l<pu<3.
Then we can write

3
(2.15) b(t,1,8) =Y bi(1,8)pf(1,7,8),
=1

where

]A)/k(t,l} ) = H (T - j';/j(t7 f))7

I<u<m(k),p#l
bi(1,€) = b1, AK(1,€), ) /B (1 A (1,6),6) (1 <1<3).

(2.6) gives

min{ min |t—s| 1}|b1( H <.

seR(&

By (2.15) we have

w

0b(1,7,&) =Y bit,) (2t + Af (1, ),

=1

since Zi:l flllf (t,&) = 0. Therefore, we have

3 1/2
. . . "k 2
(2.16) mm{sle%)z s,1}|6rb(t,r,é)|£C1{6|T|+\/§<;A,(t,é)) }

= C|{6|T| + \/E&éc(la é) 1/2}7
since
3
(2.17) DA (68)" = 245(1.0)
=1

So (2.13) and (2.16) yield (2.8) with C> > (2v/3 +V/6)C;. Next consider the case
where if(l, &) # if(t, &= ié‘(l, &), for instance. Then we have /h,(¢, ié((t, &), & pF)
=0 and, therefore, we can write

(2.18) b(t,7,¢) = (v = A3 (£,)b(t,7,€),
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where b(t,7,&) is a linear expression of 7. (2.6) yields

(2.19) min{ min |t—s|,l}|l;(t,r, &) < CH{V2|t = A1, &)| + |t = Ak, ).

sed(d)

So we have
b(t,7,&) = by (t,&)(x = A (1,9) + ba(1, &) (x — 15(1,€)),

(2.20) min{ min) |t —s], 1}|l§1(l7 Hl < V20 (1=1,2),

where

bi(1,¢) = (=1)'b(1,254(¢,€), &) /(A (1,8) = 45(1,€)) (1= 1,2).
Since
(221)  :b(1,7,8) = bi(1,E)(x = A (1,9)) + (b (1, &) + 2ba(1,0) (x — A5 (1, €)),

(2.13) and (2.17)-(2.21) give

min{ min |t—s|,1}|(61b)(1, @ (1,6)/2)',9)

seA(©)
<420 {(@k(1,6)/3)" 4 2% (1,6)'*} < 12v2C185 (1, €)',

which proves that (2.8) is valid. Finally consider the case where A¥(r,¢&) =
2X(1,6) = AK(1,¢) (= 0). Then we have a¥(t,¢) = ak(1,¢) =0,

hy(t,7,& p*) =37* and  hy(t,1,& pF) = 3%

Therefore, we can write

(2.22) b(t,7,&) = ©°b(1,),

where

(2.23) min{ min |z — s], 1}|5(t, &) < V3.
seR(E)

This yields

min{ min |7 — s, 1}|(a,b)(t, (@ (1,6)/2)'3,8) = 0 < I (1,0,& pX) ' (= 0).

seR(E)
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Next we assume that (2.7) and (2.8) are valid. Write
b(1,7,8) = b(t, (a5 /2)', &) + (8:b) (1, (a4 /2)', &) (v — (a5 /2) ')

+5(020)(1,0,8)(x — (a%/2)'1*)?,

l\)l'—‘

(2.24)  ha(t,7,& p%) = 9((a5 /3)” — (a5 /2)*7) + 6(ak /2)* (c — (ak/2)' )
+3(% — (@5 )2)°P),

where af = ay(t,¢&) (I =2,3). Since

(2.25) ha(t, (a5 /2)', & p*) = 9((ak /3)” — (a¥/2)*),
we have
(2.26) ha(t, (a5 /2)'3 & pF) < (1,7, & pP).

Moreover, we have
(227)  (x—(@§/2)'P)? <7 — (@ /2)*P + 2(a5/2) P (- @ /2)'P)
< hy(t,7,& p4)' PV + 2 (17,8 54 /V6
< 2hy(1,1, & pF)2,
(2.28)  {(@)'"P(x =@ /2)") = (1, @5 /2)"7, & P4 - (@5 /2))*
+{3(ak/2)*3 (xr — (ak /2) 1?2
< 5hy(t,7,& pF)2.

We may assume that |(625)(¢,0,&)| < Cy. Therefore, (2.6) is valid with C; > 6y,
which proves the assertion (i). (2.25) gives

(1, (@5/2)', & pY) = 9{(a5 /3) — (a5 /2)*"}
=9{(a5/3)'* — (1a%1/2)" " (@5 /3) " + (a5 |/2) ')
x {(a5/3) + (laf1/2)*}.
So we have

(229)  9(ak/3)**{(ak/3)'* — (1ak1/2)' P} < ha(e, (¥ )2)'7, & pF).
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On the other hand, we have
I, 44(1,8), & p*) = 12(a5/3)° — 12(a5/3) (1431 /2)
= 12(a§/3)"2{(a5/3)" — (1a§1/2)'"*}
x {(a5/3) + (a5 /3)"2(la51/2)'" + (a5 |/2)*7}.
By (2.13) we have
(2.30)  12(a§/3)7*{(a5/3)"? — (1a51/2) '}
< (1, 44(1,8),& p¥) < 36(a3/3)°*{(a5/3)'? — (la51/2) "},
which, with (2.26) and (2.29), yields
(231)  ho(t, (@5/2)'7,& p*) < ha(r, A5(1,6),& p¥) < 4ha(1, (a5 /2)', & pY).
Now we can prove the assertion (ii). Note that
0,07 p* (1,7, &) = 20,af (1, ),
(2.32) 3:b(1,7,8) = 26K (1, &)t + bX(1,8) + i0iak (1, &).
So we have
(2.33) |(0:b) (1, 4% (1, €), &) — (2:b) (1, (a5 (1,€)/2)', ¢)]
= 2lbo(1, (@5 (1,8)/3)'* = (1ak(1,)]/2)"}
< 2lbo(1, O)|(@5 (1,¢)/3)'?

since |A%(1,&) — (ak(1,)/2)' | = (ak(1,8)/3)"* — (|a%(1,¢)|/2)'*. This implies
that (2.8) is valid if and only if (2.10) is valid. We have also

(2.34)  |b(t, A5(1,6),8) — b(r, (a5 (1,¢)/2)' 7, )]
< {(@5(1,9)/3)"% = (18§ (1,9)1/2) P} (2:b) (1, (85 (1,€)/2)', €)]
+{(a5(,9)/3)'* = (15 (1,9)1/2)*¥?(070) (1,0, ¢)| /2.
It follows from (2.25) and (2.26) that
(2.35)  3(a5(1,9)/3) (@5 (1,¢)/3)"* = (1@t (1,€)]/2)'*}

< (1, (a¥(1,6)/2)'3, & p*)'? < (1, 4% (1,6), & pF)'V2,
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since (o2 — f)"/* > a!/2 — B2 if 4> > 0. This, together with (2.8) and (2.34),
proves that (2.7) and (2.8) hold if and only if (2.9) and (2.10) hold. O

LemMa 2.3. Assume that 1 <k <r, and m(k) =2. Then there is C, >0
satisfying

(2.36) min{ min |1, 1}|sub a(PY)(1,7,8)| < Qi (1,7,&; )2
SER(E

for (t,7,8)e[0,6,] x R x (T NnS" 1)
if and only if there is Cy > 0 satisfying
23 mind min |r—sl.1 s ()1, ~ak (1,12 )
SER(E
< Coln(t,~af(1,)/2,& p")'? for (1,€) €(0,61] x (PN S").
REMARK. Assume that m(k) = 2. Then we have
(2.38) hi(t,7,& p*) = 2(v + af (1,€)/2)* + 2ak (1, ¢).
ProoF. We have
sub a(P*)(1,7,&) = sub a(P*)(t, faf‘(t, £)/2,&)

+ (8; sub a(P¥))(1,0,&)(t + ak(t,&)/2).

Therefore, this, together with (2.38), proves the lemma. O
Define
(2.39) BE(1,8) = sub o (P*)(1, 4% (1,¢) — af (1,6)/3,¢)

for 1 <k <r with m(k) =3. We note that
dway (1, €) = 2ay (1,0t (1,€) /3 — 0,5 (1,€),
sub a(P¥)(t, T — ak(1,6)/3,€)

i

505 (1,)

=gk (t,t —ak(1,8))3,&) +id,al(,¢) -1 —

if 1 <k<r and m(k)=3.
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Lemma 24. Let keN satisfy 1 <k <r and m(k)=3. (i) Assume that
ak(1,&) #£0 in (1,&). Then there is Cy >0 satisfying

(2.40) mm{ min |t — s, 1}|sub a(P*)(t, 1 — al(1,8)/3,8)]

seR(E)
< Cihy(t,7, & PO for (1,1,8) €[0,0)] x R x (T ns™)

if and only if there is Cy > 0 satisfying

k
(.41) mind min |1 5,1 5 (1 laf1.¢)
< CZ(ﬁk([’ é)&g(l‘a é))1/27
(2.42) min{ m}n) [t — s, 1}|b (1,8) + id,ak(1,&)|
seR(E

< Gas(1.9)'? for (1.8 €[0,01] x (TNs™).
(il) Assume that a%(1,&) =0. Then (2.40) is valid if and only if

bY(1,8) +id,al (1,6) = bE(1,6) =0 for (1,6) €[0,8)] x (CNS™ ).

PrOOF. Assume that a(¢,&) #0 in (7,£). By virtue of Lemma 2.2 it is
enough to prove that the conditions (2.9) and (2.10) are equivalent to the con-
ditions (2.41) and (2.42). Here we may modify the constants appropriately. Since
|45 (1,&)| = (a5 (1,6)/3)"%, by (2.32) we see that (2.10) is valid if and only if
(2.42) is valid. (2.13) and (2.14) yield

(243)  108(a5/3)*{(a5/3) — (1a§|/2)*}
< DM(1,&) = 108{(a5/3)° — (a5 /2)*} = 108{(a3/3) — (|a}|/2)*"}
x {(a5/3)* + (a5 /3)(1ax1/2)" + (|51 /2)*"}
< 324(af/3)*{(ak/3) — (1ak]/2)*"},
where a, = a; k(¢,&) (I =2,3). This, together with (2.30), yields
(2.44) 3(a5 /3)ha(t, 4%(1,8),& p")
< DM(1,¢) < S4(a5 /3)ha(1, 44(1,€), & pY),
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since
(ak/3)' 2 {(ak/3)'* - (lak1/2)' 7} < (a5 /3) — (jak|/2)*">
< 2(ak/3)'*{(a%/3)"* — (|jak|/2)" ).

Therefore, if (2.9) is valid, then (2.41) is valid with C, = v/3C;. Applying the
Weierstrass preparation theorem to aX(z,¢), we can prove that (2.9) is valid with
C; = 6C, if (2.41) is valid, which proves the assertion (i). Next assume that
ak(1,&) =0 in (¢,¢). Then, by (2.12) and (2.13) we have

ay(t,6) = DX(1,&) =0 and  hy(1,7,&; pF) = 374,

which proves the assertion (ii). O

For (t,x%) € (0,6;] x R" and &> 0 we put

Q.(10,x°) = {(t,x) e R x R™; 15 — 1 > ¢]x — x°|*}.

LEMMA 2.5.  Assume that the Cauchy problem (CP) is C* well-posed and has
finite propagation property. Then there is & > 0 such that for (ty,x°) € [0,0) x R"
and peZ., there are C >0 and q € Z, satisfying

|u|p7950(t07x0) = C|Pu|(]«,QEO(t0«,XO)
or any ue / with u(t,x = U ere s dejine Y
' C* (R™™Y with w0 = 0. H |,.x is defined b

[floxk = sup  |D/DIf(t,x)].

(t,x)eK,j+|a|<p

Proor. We can choose g > 0 so that
({(11,x")} = To) N {r = 0} C Q, (10, x°)

ift (t0,x°) € (0,61] x R", (t1,x') € Q,(to,x°) and #; > 0. Here Iy is a proper
convex closed cone in R™! such that Ty € {r >0} U{0} and T, satisfies the
following:

u(t,x) =0 in To(to,x°) (= {(to,x")} — )
if (19,x°) € [0,61] x R", ue C*(R™1),

supp u C {t >0} and P(t,D;, Dy)u(t,x) =0 in Ty(t9,x°).
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Define

X ={f € C*(R"™"); supp f C {1 > 0}}.

X is a closed subspace of the Fréchet space C*(R"™!'). The operator X 3
f(t,x) — u(t,x) € X is a closed operator, where u(¢,x) is a unique solution in X
satisfying Pu(z,x) = f(t,x). So Banach’s closed graph theorem proves that for
any compact subset K of [0,00) x R” and p e Z,, there are a compact subset
K’ of [0,00) xR", C, x>0 and g€ Z, satistying

(2.45) ul, x < Cp k|Pul, g for ueX.

It follows from [2] that for any u € X and (ty,x°) € [0,1] x R" there are f e X
and C’ >0 such that f = Pu in Q,(t,x") and

(2.46) [/ lgreet < C'Puly o 1, 0)

(see, also, [6]). By the assumptions there is v € X satisfying Pv = f. Then finite
propagation property implies that v(z, x) = u(t,x) in Q (t,x°). (2.45) with K =
Q. (19, x°) N {r >0} and (2.46) yield

|u|P,Q::0(fo~,x“) = |U|p,Q,,-0(t0,x“) =< CP;K|f|q,K’ =< CILK‘f|q,R"+'

S C/CP¢ K |1)u|p’Ql;0 (tl)v-xo) 3
which proves the lemma. O

3. The Triple Characteristic Factors

We factorized p(t,7,¢&) as (2.1):
o B
p(t,t,8) = pr*k(t, 7,¢) for (1,7,6) €[0,61] x R x ([;NS"),
k=1

where 1 < j < Ny. In this section we omit the subscript j and the superscript j,
and “j” of r(j) and m(j, k), in the same manner as in §2. Fix ko € N so that
1 < ko <r and m(ky) =3. We also define D,k“(t7 & (0</<3) by

3
2 +Y DR = [+ uf1,8),
=1

1<k<I<3

DY (1,8) =1,
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where ,u,ff’,(t, H=(14 k"(l &) — /llk‘)(l, é))z. Then we have
Dy (1,€) = D*(1,8) = 44y (1,9)” - 2743 (1,)’,
Dy (1,€) = 9ay"(1,€)”,
DI(1,&) = 64 (1,).
By the factorization theorem we can write
(3.1) P(t,7,8) = P'(1,7,&) 0 --- 0 PR (1, 7,&) 0 PR (1,7, &)
o---0P'(t,7,&) 0 PP(1,7,&) + R(1,1,8),

where R(t,7,¢) e 9" "7([0,61] x (T\{0})). We note that the P¥(r,7,¢) are
different from the P*(¢,7,&) in (2.2) if ko # r, and that whether (2.18) and (2.19)
in Lemma 2.5 of [11] are satisfied or not does not depend on the order of the
product in (2.2) (see Lemma 2.5 and its remark of [11]). We may assume that
P*(t,7,¢&) are defined for (1,7,¢) € 0,6;] x R x (T U (=T))\{0}) as stated in §2.
For (t,7,¢) €[0,61] x R x ((—=I)\{0}) we define R(t,7,¢) by

R(L‘Qé) :P(tafaé) _Pl(taf7é) O"'Opk071(tﬂfaé) OPko+l(t7T7é)
o ~-0Pr(l,‘[7f) oPkO(Z,T,f)

(see Lemma 2.1). Now fix ko, and write P¥(z,7,&), p*(t,7,&), Df(1,&),... as
P(t,7,8), p(t,7,8), Di(t,E),. .., ie.,

p(t,7,8) =7 + a1 (t, &) + ar(t, &)t + a3 (1, &),
p(t,7,8) = plt,r —ar(1,8)/3,8) = ©° — (1, )t + a3 (1, &),
P(t,7,8) = p(t,7,&) + qo(t,7,8) + qi (2,7, &) +r(t, 7, &)

until Lemma 3.5, where ¢;(¢,7,¢) € 5”1%7/([0,(51] x ([\{0})) is positively homo-
geneous of degree (2—1/) in (g,&) for |[§[=1 (/=0,1) and r(t,7,¢) €

% 2([0,01] x (T\{0})). Let #€[0,6/2], €T NS"! and 6y >0, and let
T(0),2,(0) e C*((0,00]) N C([0,60]) (1 <!<n) be real-valued functions sat-
isfying the following:

i) 0<t+ T(0) <0, for e (0,0].

ii) 7(0)=0 and 2(0) = &°, where Z(0) = (E,(h),...,E,(0)).

iii) 2(0) e S"~! for 0 € [0,6y] and the Z(0) are real analytic in [0, 6p).
iv) T(6) can be expanded into a convergent Puiseux series of 6 € [0, 6.

(
(
(
(
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We say that T(0) and E(0) satisfy the condition (7, E) if the above conditions
(1)—(iv) are satisfied.

(I) The case where Ds(z,E(0)) £ 0 in (¢,6).

Applying the Weierstrass preparation theorem, we can write

Ds(to + t,E(0))ax(to + t,E(0))

o0 noy

=> d(00" =0"d(1,0) [[(: — u(0), d(1,0) #0
1=l i=1
for (¢,0) € [~dp,00] x [0,0p), where 0 <y <o) —ty, di(t)#0 and ¢(0)=
t;(0;1,2). The #;(0) can be expanded into a convergent Puiseux series of ¢ in
[0, 6], with a modification of 6y if necessary. Put

N
=
[

(0); p) = {to + 1:(0); 1 <i <y},
#0(E(0); p) = {(t0 + Re 1:(0)) ;; 1 < i <no}.
Then we have
A(2(0)) D Ro(E(0); p) (0 € (0, 00)),

(3.2) min |ty +T(0)—s| < min |to+ T(0) — s
se0(2(0)) se o (2(0);p)

< min to+T(0)—s| (0€(0,60)).
XG%(E@WI 0+ T(0)—s| (0€(0,060])
(2.43) implies that Ds(z,&) =0 if Ds(t,&)ax(z, &) = 0.
(I1) The case where D;(¢,=(0)) =0 and a,(¢,Z(0)) #0 in (1,0).
Similarly, we can write

no

ar(to+ 1,E(0)) = 0°d(1,0) [[(t — u(0)), d(1,0) #0

i=1
for (l, 9) € [—50,50] X [0, 00],

where ;,(0) = 1;,(0;1,Z) is expanded into a convergent Puiseux series of 6 in
[0, 6], with modifications of 0 and d if necessary. Since Ds(t,&) = 9a(1, €)%, we
have also

A(2(0)) > {(to + Re 1:(0)) 5 1 < i < ny} (= Ro(Z(0); p) (0€ (0,00)).

Putting Z0(E(0); p) = {to + t:(0); 1 <i<np}, we have (3.2).
(III) The case where ax(¢,Z(0)) =0 in (¢,0).
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By (2.13) we have p(t,7,E(0)) = 7* and put

Ro(E(0); p) = #0(E(0); p) = D (C A(E(0))),

ngp=0 and /[y = w0
Now we define

it (= fito, &, T,E)) = {Ordyjo ax(to + T(0),E(0))}/2,

ﬂO (E ﬂO(tov 50, T, E)) = {Ol‘delo D3(t0 + T(G)a 5(0))}/2 - ﬂ’

[1]

wy (= u(20,E°, T,2)) = Ordmo{ min |ty + T(0) — s|a(to + T(0)7E(9))}7

seAo(E(0);p)

1y (= (10,0, T, ) = OTdolo{ min i+ 7(6) - slf(io + T(0). E(fm},

SEY ()(E

U (= ,u3(t0,50, T,2)) = Ordmo{ “min lto + T(0) — s|261(t0 + T(H),E(H))},
seAo(E(0);p)

SGJ()( (

o(= 5({0,50, T,B)) = Ordglo{ mln |to +7T0) — s|},
where
a(t, &) = by (t,€) + id,ar (4, €),
¢1(t,&) = sub® a(P)(t, —ai (t,£)/3,&)

and f(¢,¢) is defined by (2.39) with k = ko, and g =y =jiy—fi=o0 and 6 =0
in the case (III). Here for f e C([0,6p]) Ordyjo f(0) =v (¢ R) means that there
is ¢ € C\{0} satisfying f(0) = c0"(1+o(1)) as 0 | 0. We write Ordy|o f(0) = o
if £(0)=0(0") as 0|0 for any N € Z,. Note that

(33) (3 sub a(P))(t, A(1,€) — ar(1,8)/3,&) = 2bo (1, E)A(1,) + (1, €).
It follows from (2.43) and (2.44) that
flo = 24t
= Ordyyo ha(to + T(0), A(to + T(0),E(0)),Z(0); p) .
ProposITION 3.1. If

(3.4) min{py, 3}t <A or  py < fy,
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then “the Cauchy problem (CP) is not C* well-posed” or “(CP) does not have
finite propagation property.”

REMARK. When one replaces 2(Z(0); p) by Z¢(2(0); p) in the definitions
of w, (k=1,2,3) and J, one can show that the proposition is valid, using (3.2).
It follows from (2.5) and (2.26) of [11] that whether (3.4) holds or not does not
depend on the order of the product in (2.2), although the g, are defined under the
factorization (3.1). Indeed, if 1 <k <r, m(k) =3 and a(t,7,¢{) is a polynomial
of 7 satisfying a(t,7,&) = O(hp_1(t,7,E)"?) for (1,7,&) €[0,61] x I x (T N S"1),
then there are b,(#,&) (1 <u<3) and C >0 such that

3
a(t,t,8) = bu(t,E)pk(1,7,8),
u=1
bu(t,E)| < C (1 <p<3).
So we have

3
l0:a(t,1,6)| < > [pk(t,1,6)| < C'hn (1,1, p*)' 2.
n=1

COROLLARY 3.2. Assume that the Cauchy problem (CP) is C* well-posed
and has finite propagation property. Let (to,éo) €[0,61/2] x (TN S"Y). Then we
have

ﬂo(l(), 50’ T7 E) < ;uZ(l07 éoa T7 5)7
ﬂ(t07507T75) Sﬂk(lo,éo,T7E) (k: 173)
if T(0) and Z(0) satisfy the condition (T,E).

REMARK. The corollary does not depend on the order of the product in
(2.2).

In the rest of this section we shall prove Proposition 3.1, and give several
lemmas. Assume that (3.4) is satisfied. Then we have J < co since y; >0
(k=1,2) and u; > 20. Moreover, we have j, >0 and D3(t,&") = 0. There is
co > 0 such that

min |t0 + T(0) — 5] > co0° for 0 0,0).
se(E(0)
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In the case (III) we may take ¢y =1 and ny =0. For ve R we put

(3.5) T,(0) = T(0) + v6°.

In the cases (I) and (II) we have

ar(to + T,(0),2(0)) = 0*(d(v) + o(1)) as 610

where d(v) #0 is a polynomial of v with real coeflicients. It is easy to see
that

d(v) >0 for ve[—co/2,¢0/2],

a(to + T,(0),E(0) 1/2

= 0*(\/d(v) + o(1

uniformly in v e [—cy/2,¢0/2] as 6] 0.
Write

a(to + T,(0),2(0)) = 0 °(dy(v) + o(1)) as 010 if a(z,Z(F)) £0 in (,0),

Blto+ Tu(0),E(0)) = 07 (da(v) + (1)) as 010 if B(,E(0)) #0 in (¢,0)
1(to + To(0),2(0)) = 0%72(d3(v) + 0(1)) as 010 if ¢(,2(0)) #0 in (2,0),
where f;, € Q and the di(v) (# 0) are polynomials of v. Here, for instance, we put
= oo if f(¢t,E(f)) =0 in (¢,60). We note that g, <y (1 <I1<3). It is easy to
see that

{Ordyjo D3(10 + T0(0), E(0))}/2 — e = iy

for ve[—cy/2,¢0/2]
in the case (I). We also write

as(ty + T,(0),E(0)) = 0" (da(v) +0(1)) as 010 if a3(¢,E(0)) #0 in (,0),
where dy(v) (£ 0) is a polynomial of v with real coefficients. Therefore, there
are vy € (co/4,c0/2) and sy > 0 such that Iy = [vy — so, vo + So] C [co/4, co/2] and

di(v) #0 if a(t,E(0)) #£0 in (2,0),
i )

E(0) #£0 in (¢,6),

)
) #0 in (1,0),
,E(0)) #0 in (1,0)
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for v e ly. In particular, we have

Wto + To(0),2(0)) = { 1 if dy(v) >0 or a3(¢,E(6)) =0 in (1,0),

—1 if ds(v) <O
for v e Iy, where

1 if as(1,8) >0,

Wt = { 1 if as(,6) < 0.

We replace T(0) by T,(0). Then we can assume that I = [—so,5)], & =
(1 <1<3) and min{y, 3} <@ or u, < fiy. Let k and &' be positive rational
constants satisfying 'k < 1. Moreover, we assume that 6’ € (0,1) and 1 —é&'x <
orc/2 (see (3.18) below). We make an asymptotic change of variables:

(3.6) t=1(s;p) =to+T(p ™) +p s, x=x(y;p)=p"" ).
Put
(3.7) P,(s,a,n) = P(t(s;p), p”a,p' 1.

Let K be a compact neighborhood of (#,0) in R x R”, and put
V={(s,0,p7") € [=s0,50] x R" x (0,p5; [y <1},
where p, > 0. We choose p, so that

(3-8) {((s:0), x(3;p)); 5 € [=0, 0] and |y| <1}

c{(t,x) e K;te[0,01]} for p=p,.

LemMa 3.3. Let y € C*(R), and let ¢(s,0) be a polynomial of o of degree 3.
Then we have

e~ "Wq(s, p™Dy) (e Vu(s))

= a5, (0 (5) + 0)) — 34 (5,0 (0 (s) + @)™ T ()
—£a .0 @OW) + o)) e

for u(s) e C*(R), where q¥(s,a) = 0%q(s,0). Here a(s, 0)|,—p, = a(s,Ds) for a
symbol a(s, o).
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2

ProOF. If ¢(s,0) = g, 6% or &3, then the lemma can be easily proved. This

proves the lemma. |

Let e =+1, and let vy and y, be positive constants. Put

i
(3.9) o(s:p) = > _p (s p),
k=0

+p°%y E(p™),
(3.10) E(s, y;p,e,vo, ) = explie®(s, y; p) + ip" p(s; p)],

where ¢, (s; p) € C*([—s0,50]) for p = p,, the ¢ (s;p) satisfy |0 p(s;p)| < C; for
leZ, and (s,p~") €[—s0,5] x (0,p5'], =0 or 1, and A(z,&) (= A% (1,&)) is
defined by (2.11) with k = ky. By Lemma 3.3 we have

P(s, Dy; p, E)u(s)
= E(5, ;0,6 v0,0) " Py(s, Dy, D,)(E(s, y; p, &, vo, )u(s))

= E(Svo;p767 VO?w)ilP(t(S;p)ﬂpéthng(pihﬁ))(E(s?0;/)7 &, vo,(p)u(s))

= |P(t(s; p), epA(s; p) + p* ™00 + p*o,epE(p™"))
5 PO (53 p),epA + p™dug + p™a,epE (™))

> p26K(£p1761caYA'+pvoas2¢> */)36]C(8[)176IC632A~+[)w)asgp) M(S),

where

and ¢ = ¢(s; p).
LemMMA 3.4. Let ueZ,, and let a(s,0) € C*([—s0,50] X [0,00]) satisfy
a(s,0) = O(0") wuniformly in s e [—so,8] as 0] 0.
Namely, there is C > 0 such that

|0 a(s,0)] < C if (s,0) € [—s0,5)] x (0,00)].
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Then, for any le Z,

d'a(s,0) = O(0")  uniformly in s € [—so,50] as 0] 0.

ReMARK. For instance, for a(¢,&) there is L e N such that

a(s,0) = ax(1(s;07%),2(0%)) € C* ([~s0,50] x [0,05'")).
Then, we can apply the lemma to a(s,#), and for any /€ Z, we have
dlay(t(s;p), E(p™)) = O(p™) uniformly in s e [—s0,5] as p — o0

ProOF. By assumption we have

(0ha)(s,0) =0 ins (0<I<u—1).
Then Taylor’s formula yields

U 1
dla(s,0) = (ﬂ@_ 1)!J0(1 — )" (0loka) (s, 0) dr.

This proves the lemma.

Recall that

p(t,7,8) = plt,t — an(1,8)/3,8) = ©° — do(1, &)t + @31, €),
P(t,7,8) = p(t,7,8) + qo(t,7,¢) + q1 (1,7, &) + r(1,7,€),
qolt, T — ay(1,)/3,8) = bo(t,&)7* + by (1, &)t + by(1, &),

o, &) = by (1,€) + id,a (1, &)

A straightforward calculation yields

(3.11)  P(s, Dy; p, E)u(s)

= |epp(t(s,p), A(5:p), E(p™)) + 3ep' 2% A (s, p) (p" 050 + 0)

+ P (pPdsp + ) + pPqo(t(s, p), A(s; p), E(p™™))

+ep" gy (1(s,p), A(sp), E(p ™)) (p" 050 + 0)

+ p¥bo((5,p), E(p ™)) (p" 05 + 0)°
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+epqu (t(s, p), A(s; p), E(p ™))
e (1 = - ,
+ g\ (1(5,p), A(5p), E(p ™)) (p" 050 + 0)
E 20x—1,(2) 0.2(p " Vo 2
+37" (2(s,0),0,E(p™"))(p" 059 + )
+1(1(s5; p), epA(s; p) + p™ 050 + p* o, epE(p "))

- {36ipA(s;p) +3ip™ (p" 0up + &) + ibo(1(s, p), E(p™"))

i —_ i —_
+ 500 0.7 + 572 1530), 0.5~ |
% (8pl+r51(aSA~(S; p> +p2(5k+voaf(p)
_ (8p1+2§1(8S2A~(S;p) _~_p3(5x+v063(0) u(s)

= p36;<+3w;( 8s(ﬂ)3
+ 2 {qolt(s; p), A(s; ), E(p ™)) — 3ip™ A(s; p) s A(s; ) }
+ 3ep! 220 A (s p) (0,9)
+ep" Ny (1(s:p), E(p ™)) + p™ Bsan (1(53 ), E(p 7))}
X (05 + p~ " Dy)
+ep{qi(t(s;p), A(s; p), E(p™%)) + p** 0Fan((sp), E(p ™)) /3
+ip™bo(t(s;0), E(p™)) dsar (t(s5 ), E(p ™)) /3}

—2ep*(A(s;p)* — as(t(s5;0), E(p ™)) /2)
+ pI003(0,0)2 Dy — 3i(0,0) (020)

+p I (s,p”"; 0,029,079, Dy, €)

+ b0 (t(5;9), Z(p ™) (0s0)” + p " a(s. 71 s, D)}
+ep' TR 64(1(s;p), Z(p 7)) (0s90) Dy

= 3iA(1(s;p), E(p™))(079)

— 3i0,A((s; ), E(p ™)) (050) + p " I3(s,p~"; Dy)
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+ 207 A(1(s;p), E(p~))bo(1(s: p), E(p ™))
x (05 + p " Dy) Hu(s)

= [P0 () + pP T (P! B(1(s3 ), E(p 7))

- 3ep I (B A (1(5; ), E(p)) (049)°

+ep PO (PR (1(5; ), B(p ™)) (s + p D)
208 G, (1(5:), Ep ™))
= 20p N (P15 ), B )

—a3(1(s;p),E(p™"))/2))

+p P20 {3(0,0)° Dy — 3i(0,0) (07 0)

+é&p

—

+p N (s,p7" 050,070,000, Dy, )
+ 07 %bo(1(530), E(p ™) (@s0)> +p " a(5.p71: s, D)}
+ ap L6 (o A (1(s55 p), Z(p ™)) (0,9) D
— 3i(p™ A(1(s5;p), E(p~)))(020)
= 3i(p™0,A(1(s:p), E(p ™)) (0yp) + p " By(s5,p 7" Dy)
+2p7 % (p A(t(s5.p), E(p~)))bo (t(s; ), E(p 7))
x (050 + p~"Dy) Hu(s),

where /i (s, 0; X1, X2, X3, X4, X5) is a polynomial of {Xj},_,_s with coefficients
in C*([—so,50] x [0,1]), degy, 1 =2, degy, h =1 (k=2,3,5) and degy, /; =3,
h(s,0; X1, X>) is a polynomial of X; and X, with coefficients in C* ([—so, so] X
[0,1]), degy, b =2 (k=1,2), and (s, 0; Dy) is a differential operator of order 2
with coefficients in C* ([—so, so] X [0,1]), and (s, 0; D;) = 0 if ji= co. Here we
have used the facts that

34(1,8)° = (1,9,
BO) = ao(t(s:p), AC) = ar()/3,Z (™) + ip™ A () () — 397 0aa()

= qo(t(s;0), A(-) — a1(-) /3, E(p™)) — 3ip™ A()o,(A(-) — a1 (-)/3),
bi(-) + ip®dsar(-) = a(-),
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q1(t(s;p), —ar(-)/3,2(p™)) +P25K6x2f11(')/3 + l'.D(SKbo(')aval(')/3 =¢é(),
q1(1(s:p), A(-), E(p™))
= qi(t(s;p), ~a1()/3,E(p™)) + ¢{" (1(s: ), —a1 (-) /3,2(p ™)) A(")

420 1(5:0). 0,200 A0,

r(1(s:p),epA(-),epE(p~)) = O(1),
r(1(s; p), epA(-),epE(p™)) = O(p7"),
r®(1(s;p), 0,epE(p™*)) = O(p~?)

uniformly in s € [—so,50] as p — oo,
where () = (¢(s;p),E(p™")). We note that
A(1,8)° = a3(1,8)/2 = v(t, ){(@x(1,6)/3)* = las (1, 9)1/2},
Ds(1,8) = 108{(ax(1,€)/3)* — |as (1, )| /24 (aa(1,€) /3) " + |as(1,€)]/2},
Ds(1,€) < 216|4(1,¢)* — a3(1,6)/2/(ax(1,8)/3)** < 2D5(1,9).
This implies that there is C > 0 satisfying
P A(t(s;p), E(p ™)) = as(t(si p), E(p ™)) /2] < €

for (s,p~') € [=s0,50] x (0,py']. We shall prove Proposition 3.1 by dividing into
four cases:
Case A is the case where

min{u;, i3} = /2 and  p, < 24.
Case B is the case where
min{u, 3} >4 and 24 < p, < .
Case C is the case where
< p3 2y <ppoand gy < f
Case D is the case where
My S py, o 2uy <ppoand py <L

Let us first consider Case A. We choose

Vo= (2= ppic = 20K) /3, K= (0 + /2 + 3/2) ",
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where u, = min{g — ,/2,2/3}. Then we have
30K +3vg =2 — ok + 0K, 1 —0Kk = (uy + 314)K/2,
Vo = Kk (>0), vy <2/3,
30K + 3vg — (1 4+ 20K — fic + 2vo) = vo/2 + (4 — 11 /2 — pa)c = vo/2,
30K 4 3vg — (1 + 20K — ik 4+ vo) = vo/2 + (g — a/2)K = v /2,
1

30K + 3vg — (1 + 28K — pzk) = 3vo/2 + (u3 — wa/2)xc = 3v9/2,

(

301 + 3vo — (3 — 2fgxc + fix) = 3vo/2 + 2(fig — 2)c + 3(ft — 12 /2 — pg)ic = 3vp /2.

So we choose e =1, I =1 and 7, = v/2 in (3.9) and (3.10). We note that
A(U(s:p), Z(p™)) = A(t(s;p), E(p™))° = as(1(s53p),Z(p™))/2 = 0

and 3 — 2jyx + jix = —oo when ji = oo. Define ¢,(s;p) € C*([—s0,50] X [pg, 0))

by

(.12 lsip) = | (o 5Bl p), )
Note that

PLR=RB(t(s;p), E(p7™)) = da(s) + o(1) as p — o,

where dy(s) # 0 for s e [—so,50]. Here we have chozen a branch of (—p#<=9¢ x
B(t(u; p), E(p~™)))"/? so that its imaginary part is negative. Then there is d > 0
such that

Im ¢, (s;p) > d|s| for se[—s,0) and p > p,,
with a modification of p, if necessary. Since
(05003 0) + p 720501 (530))” = (050)” + 3p 72 (25020)*(0s91)
+3p7 (0p0) (0s1)” + 2 (0401)°,
0s¢,(s; p) is chosen so as to satisty
3(0u00) 2 (0s1) + 3p~ B2 (A (1(s; p), E(p 7)) (0s00)
U (5 ), E(p™))) () = 0.

Noting dsp(s;p) = (—da(s))"/* + O(1) as p — oo, we define
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nsi) = = | 17 ), )

+ p T (g 1w ), 2 (p ™))/ (3(0500) (w5 p))] dlt

Putting

p"u(s;p7h),

NgE

(13)  ulsp )~
/

(3.14) u_i(s;p =0, w0;p =1, w(0;p)y=0 (k>1),

Il
o

we obtain the following transport equations for u(s;p~!):
(3.15) {(3(ap(s: p))* + 69~/ 2 " (0™ A(1(s3 ), Z(p ™)) (0s9)
+ p—l'o/Z—(m—ﬂz/Z)K(pr—JKa(,(S;p)’ Z(p™™)))Ds
+3(21(5:9)) 0o (s:p) + P72 (051’
+6p7" (P A(t(5:.0), E(p ™)) (0500) (9591
+3p7 T (R A(e(s:.p), E(p ™)) (0s0)?
+ p IR IR (IR (155 p), E(p 7)) (O )

+ p71'0/27(,u37y2/2)h'(p,u3x725/c61 (I(S;p), E(pfx))) _ 2,071’()/272(/2072/2)267%1

X (P (A(t(s:p), Z(p 7)) — aa(t(s;0), E(p ™)) /2))

— 3ip ™ (pRR O, A(t(s; ), E(p 7)) (050)
X ur(s;p~")
+{li(s,p7"; 050,08}, 0,9, Dy, 1)

+p " (s, p7 500, D) + p P (s, p7 ", D)

Xue_1(s;p =0 (k=0,1,2,...),

81
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where v = (it — 11,/2 — py)k. We can determine {ux(s;p~")}_g 15, inductively,
so as to satisfy (3.14) and (3.15). It is easy to see that there are Cjj; >0
(I,k e Z,) satisfying

|Diui(s;p™")| < Crx for Lk eZy, se[—so,5] and p e [p, ).
Let ¢(s) € C°(R) satisty

1 if [s] < s0/2,
#s) = {0 if |s| > so,
and put
N
(3.16)  wn(s,yip " e) =D p " ul(s;p )P E(s, yipevo. ) (N eZy).
k=0

Then we have

(3.17)  (p™Dy) (p' " Dy)*P,(s, D, Dy)on(s, y;p~ ', 1)
0(p35K+ZV()7}’()(N+1)+1+|0(‘ )

uniformly in Q,,_,(0,0) N {|s| < so/2} as p — oo,

=43 0(p~") N
uniformly in €, ,(0,0) N {s0/2 < |s| < s} as p — o
(M eN),
where
(3.18) Qu,.(0,0) = {(s, ) € R"™ ;s < —gop™ 2% | y| 2},

Here we have taken ¢ = 1 in Case A. Next cosider Case B. Note that g < oo and
1, < 0. We choose
= (1= 0K + furc — jpx) /2, 1= (6 — fu+ fig) -

Then we have

2 — o + 01 = 1 + 20K — fuc + 2vo, 1 —0K = (fy — fi)k,

vo = (g — 1y)Ke/2 (> 0),

1 + 20K — fuc + 2vy — (39K + 3vp) = vo + (py — 20)1c = vy,

1 + 20Kk — fuc + 2vo — (1 + 20K — e + vo) = vo + (14 — ) = vy,

1 + 20K — fic + 2vg — (1 — pzic + 20K) = 2vg + (p3 — 1)k = 2wy,

(

1 + 20Kk — juc + 2vo — (3 — 241k + furc) = 2vy.
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Therefore, we choose I=0in (3.9) and & = +1 so that the imaginary part of a
branch of (—&B(s;p)/ 3)1/ % is negative, where

Bls:p) = (P A(t(s;p), E(p ™))~ (0B (1(s55p), E(p™))).

We define ¢(s; p) € C*([—s0,50] x [po, 0)) by

olsip) = | (~abtusp)/ 3 die
0
Here we have
Bls; p) = (d(s)/3)"?da(s) + o(1) as p— oo,
d(s) >0 and dh(s) #0 for se[—s0,5)],
Im(—zf(s;p)/3)"> <0 for s e [—s0,5)

Writing u(s;p~') as (3.13), we obtain the following transport equations for
u(s;pt):

(3.19)  {6e(p™A())(0,0)D; + p~ 17253, )’

+ ep MR (iR () (Byp) — ei(p™ A(-)) (85 p)
= 3ai(p0,A()) () + 26 (P A())bo () (0 bk (55 p")

+ {ap T () Dy - ap KT (pTIE ()
— 26(p* I (A() — a3(+)/2))
+ 3p~ =2 ((0,0)* Dy — i(059) (879) + p~bo () (0s0)

+p (5,075 050,070,000, Dy, &) + p (s, p7; 050, Dy))

+ 2ep % (pP A(-))bo () Dy + el3(s,p s D) g1 (s;p71) = 0
(k=0,1,2,..),

where (-) = (1(s;p),E(p™*)). Similarly, we can determine {ux(s;p~")}_p 1.2, 5O
as to satisfy (3.14) and (3.19). We define vy(s, y;p ', ¢) (N e Z,) by (316) Then
we have (3.17), replacing 1 by ¢ on the left-hand side and O(p3x+2—ro(N+1)+/+al)
by O(p?-ter+or—w(N+2)+1+l2]) on the right-hand side. Let us consider Case C. Note
that w4, < co and min{ g, — u;, 2} > 0. We choose

o= (1=K —ur)/2, K=+ +ps) ",
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where
ps = min{ s — 20y, ft — py, 1},
Then we have
30K +3vg = 1 4 20K — e +vo, 1 — 0K = pyxc + psi,
vo = (1 =0k — ux)/2 = psc/2 (> 0), v <1/2,

30K + 3vg — (240K — oK) = vo + (fp — 21y — ps)k = vy,
30K 4 3vg — (1 + 20K — fic + 2vp) = vo + (ft — pty — ps)K = Vo,
30K + 3vg — (1 + 28K — pzK) = vo + (3 — 1y )i = vo,

(

30K + 3vg — (3 — 2k + fuc) = 3vo + 2(fg — 28)k + 3(f — g — ps)x = 3vp.
We note that
p(t(s;p),E(p™)) =0 in s for p>p, when u, = co.

So we choose /=0 in (3.9) and & = +1 so that the imaginary part of a branch
of (—ep™ 9o (1(s;p),E(p~*)))"/* is negative. We define ¢(s; p) € C* ([—s0, 0] X
[p(], OO)) by

(3.20) o(s;p) = JO(—ep#IK*(’Ka(z(u; P)E(p~ " du.
Writing u(s;p~') as (3.13), we obtain the following transport equations for
.1y
u(s;p):
(321)  {2(09)° Dy + p~ et (praronp(.))
+ 38p7(ﬂ7ﬂ1*us)x(pﬂKA(.))(@S(p)z + 8p*(/lr/t1)lc(p/lsk'*%s'f@l )
= 3i(0,9)(879) + p~bo(-) (0s) *Yur (s: ™)
+ {_28p—"0—3(/2—ﬂ1 —ﬂs)K—2(ﬂo—2ﬂ)K(p2ﬁoK—ﬂK(A(.)3 —a3(1)/2))
+0(s,p7"5 050,070, 0}9, Dy, &) + p" (s, p7"; 04, D)
+ep” TN (6(p  A(-)) (0,9) Ds — 3i(p™ A()) (9 0)
= 3i(p"0,4())(0s) +p " l3(s,p~"; D)
+2p7" (P A()bo(-) (059 + p~"Dy))}

Xukfl(s;pil):() (k:071727"')7
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where (-) = (1(s; p),E(p*)). Similarly, we can determine {ux(s;p~")}_o 1. SO
as to satisfy (3.14) and (3.21). We define vy(s, y;p~ ', &) (N € Z.) by (3.16). Then
we have (3.17) with an obvious modification. Let us finally consider Case D.
Note that u; < co. We choose

vo = (1 =0k — i5) /3, 1= (0 +us+p5) ",
where
te =min{u, /2 — pz, 3(fi — p3) /4,3 (g — 13)/2, 1}

Then we have

30K + 3vg = 1 4 20K — pzk,

1= 0K = (p3 + pt)1c = pi3ic + 3o,

vo = uek/3 (>0), v <1/3,

30K + 3vg — (2 — porc +01c) = 3vo + 2(1y /2 — py — pg)1c = 3o,

30K + 3vg — (1 4 20K — firc + 2vg) = vo + (f — p3 — pg)ic > vo,

(1
30K 4 3vg — (1 + 20K — ik 4+ vo) = vo + (1 — tt3 — 2146/3)K = vp,
(

301 + 3vg — (3 + fuc — 2f9K) = 6vo + (2(fy — 24t) + 3(ft — p3) — dug)ic = 6.

We choose ¢=1 and /=0 in (3.9) and (3.10). Define ¢(s;p) € C*([—so,50] X
[po; 0)) by

(322) oloi) = | 1= atusp), 2 )

Here we have chosen a branch of [—(p/* 2%¢, (t(u; p),E(p~™)))]"/* so that its

imaginary part is negative. Writing u(s;p~') as (3.13), we obtain the following
transport equations for u(s;p~'):

{3(250)° Dy — 3i(3,) (07 9) + 3p~ 75715 (ph= A(-)) (859)°
IS () 309) 4 p o) 00 s )

+ {p 1 (6(pP A () (D5p) Dy — 3i(p™ A(-)(67p) — 3i(p™ 0, A(-))(O50)
+ 27" (p"A())bo()(0sp + p 7" Dy) + p (s, 711 Dy))
_|_p*"O*(/12*2#3*2#6)K(p/42”*‘5’\'ﬂ(.))

_ 2/)741'0*(2(ﬁo*2ﬂ)+3(ﬂfﬂ3)74#6>K(pZﬂorcfﬁK(A(.)3 —a3()/2))



86 Seiichiro WAKABAYASHI

+0(s,p”"; 050, 070,0]p, Dy, 1)
4+ p" (s, p7 050, D) Y1 (5507 =0 (k=0,1,2,...).

Here 5(s;0,D;) =0 if g = oo, a(t(s;p),E(p™)) =0 in s for p > p, if u; = oo,
and f(z(s; p),:(p"")) =0 in s for p > p, if u, = co. Similarly, we can construct
{on(s,33p7" D)} yez, satistying (3.16) with e =1 and (3.17).

The cond1t1on (3.4) in Proposition 3.1 is satisfied if and only if at least one of
Case A to Case D occur. Indeed, first assume that min{u, 3} < g If gy < g
and 2y < p,, then y; < g and Case C occurs. If u; < p; and u, < 2u,, then
1 < fr and Case A occurs. If u3 < gy and 2u; <y, then u; < g and Case D
occurs. If uy3 < u; and p, < 2u5, then p; < g and Case A occurs. Next assume
that min{u,, 3} > i and p, < fy. I w, <2 (< fiy), then Case A occurs. If
2 <, (< fy), then Case B occurs. This proves the “only if”” part. The converse
is obvious.

Now we won’t omit “ky”, i.e., P(t,D,, Dy) denotes the differential operator
in §1.

LemmA 3.5.  Assume that the Cauchy problem (CP) is C* well-posed and has
finite propagation property. Let K be a compact neighborhood of (ty,0) in R x R",
and let py be a positive constant satisfying (3.8). Then for any p € L, there are
C>0 and qeZ, such that

(3.23) lv],.6 00,0 < Cp*|P,(s, Dy, D, )ul, &, ,(0,0) Sfor p = p, and

os, y) € C*(R"™) with supp v C {(s, »); 1(s;p) = 0},

where Q,, ,(0,0) is defined by (3.18), & is a positive constant defined as Lemma
2.5, and P,(s,0,n) is defined by (3.7).

ProOF. Let v(s,y) € C*(R""") satisfy supp v C W, where W = [—s,50] X
{yeR" |y| <1}. Put
uy(1,%) = v(p™ (t — to — T(p™)), p " *'x).
Then we have

P(t,Dy, Dy)u,(t,x) = P,(s,Dy,Dy)v(s, y).

‘t:t(s; p)sx=x(y;p)

It is obvious that

(5, 7) € Q5y,p(0,0) & (1(53 ), x(y3)) € Qu, (80 + T(p ™), 0).

Therefore, Lemma 2.5 proves the lemma. O
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We factorized P(z,7,¢) as (3.1). Then we have
Py(s, Dy, Dy)(expliep”*y - Z(p~)Ju(s))
= expliep”"y - E(p )Py (s, Ds,ep” "E(p ™)) -~ Py (5, Dy, ep” "E(p")
x PRt (s, Dy,ep” E(p7)) - P (s, Dy, ep” “E(p "))
x P (s, Dy,ep” "E(p ")) + Ry (s, Dy, ep” "E(p ™)) }u(s),

where R, (s,a,1) = R(t(s; p),p%a,p'=9*y). For P/’fo (s, D5, Dy) we constructed
asymptotic solutions {vn(s, y;p~',&)}yez satisfying (3.16) and (3.17) with an
obvious modification when at least one of Case A, Case C and Case D occurs.
Here we should choose ¢ appropriately. In Case B we constructed asymptotic
solutions {vy (s, y;,zfl,s)}[\,EZ+ satisfying (3.16) and (3.17) with 30k + 2wy in the
exponent replaced by 2 — uyx+0k. In (3.17) we replace 1 by ¢. Note that

Pp(s, Dy, Dy)(E(s, 3 ps &, v0, 9)u(s))
— expliep” "y - E(p )P, (s, D5, ep” “E(p™))(E(s,0; p, &, vo, p)u(s)),
Ry(s, Dy, Dy)(E(s, y; p, & vo, 9)u(s))
= expliep” "y - E(p~")|Ry(s, Dy, ep” "E(p ™)) (E(s, 05 p, , vo, p)u(s))
= 0(p~™) uniformly in [—sp,0] as p — oo (M eN)
for u(s) € C*([—so,50]). Therefore, Lemma 3.5 proves Proposition 3.1, since the

asymptotic solutions {vy(s, y; p’l,a)},\,€Z+ violate (3.23).

LEMMA 3.6. Assume that 1 < ko <r and m(ky) =3, and that the Cauchy
problem (CP) is C* well-posed and has finite propagation property. Let (lo,éo) €
[0,61/2] x (TN S"Y), and let T(0) and E(0) satisfy the condition (T,Z).

(i) We have

(3.24)  Ordgy  min |t + T(6) — |
s€R(Z(0); p*o)

x sub o(P)(to + T(0), A% (-) — a{"(-)/3,E(0))
> Ordyo h 1 (to + T(0), A% (-) — al*(-)/3,2(0)) "2,

(3.25) Ordy)o min |t + T(0) —s]
seA(Z(0);p*0)

x (8, sub a(P))(to + T(0), A% () — al*()/3,2(0))
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> Ordgyo d5°()""?
(= Ordgjo hma(to + T(0), A% () — af(-)/3,2(0)) "),

where A% (t,&) is defined by (2.11) with k = ko and (-) = (to + T(0),Z(0)).
(ii) Assume that to € R and (0!p*)(ty,70,E°) =0 (1=0,1,2), and put z° =
(to,ro,éo). Then we have

(326) Ordgyy  min |+ T(6) = s” x Qto + T(0), —a(;2°)/3,E(6); 2°)
seRy(E(0); p*0)

> Ordyjo hm_2(to + T(0), —ai (-;2°)/3,2(0)) /2,

where (-;2°) = (to + T(0),Z(0); 2°).

REMARK. (i) On the assumption that the factorization (2.1) is given near
t =0, the lemma is stated. Therefore, if for £, €[0,00) the factorization of
p(t,7,&) is given in a neighborhood I of 1), the lemma is valid with [0,0;/2]
replaced by a compact sub-interval of J. (i) We note that p(t,7,¢&z°) =
ph(t,7,¢) and a)(1,&2%) = al*(1,¢) in the assertion (ii).

ProofF. From (2.5) of [11] it follows that
(3.27)  sub a(P)() = sub a(P*) ()M, ()

+ S sub o(PNY() PR (Mg k() + Ol (9)'7),
I<k<rk+#ko

where () = (1o + T(0), 4% (") —a{‘”(-)/S,E(H)). On the other hand, by (1.1) we
have

(328) hm—l (Z7 T, é) = hZ(t7 T, 57 pko)n{ko}(la T, 5)2
+ ha(t, 7, & p/p ) R (1,7, )2,
(3.29) Ordy o pX(to + T(0), A% () — al*(-)/3,E(0)) = 0 if k # ko,

where hy(t,7,&p)=0if [ <0, and (-) = (1o + T(6),E(0)). Corollary 3.2, (3.27)
and (3.28) prove (3.24), since

Ordgjo p*(to + T(0), A% () — a}*(-)/3,2(0))°

> Ordgo ha(to + T(0), A% () — ay°(-) /3, E(0): p*°)
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if 0 < Ordgj p(to + T(0), 4% (-) — al*(-)/3,2(0)) < o0, where (-) = (1o + T(0),
E(0)). It follows from (2.5) of [11] that
(3.30) 0, suba(P)(t,7,¢)
= 0, sub J(Pk(‘)(t, 7,&) - H{ko}(t, 7,&)
+ sub a(PR)(1,7, &) 0.y, (1,7, &)

+ Y {epM (7. - sub o (PR (1,7, Oy, 1y (1,7, €)

l<k<rk+#k
+ pP(t,7,8)0:(sub a(t, 7, Oy 1y (1,7, E))}
_% Z {6T{pk7pk0}(ta T7f) 'H{ko,k}(tafaé)

1<k<r k#ko

+ {pka pko}(la T, é)arn{ko,k}(ta T, é)}

i
5> e (T O (1 7.0)
1 <k<lI<rk,l#k

+ p" (6,7, 9)0.({p", '}t 7, Oty 4.1y (£,7,€)) )
Corollary 3.2, (3.29) and (3.30) prove (3.25), since
(810 %) (1,7, )| < Chy_i(t,7,& p*)'/* if 1=1,2 and p+v =1,
T2 (1,7,€) = b (1,2,6 PPy (1,7, 8)% + a8, 7,& p* a0, 7, & p/p)
+ hns(1,7, &5 p/p*) P (1,7,8)%.
Next let us prove the assertion (ii). Corollary 3.2 yields

Ordgy  min  |to+ T(0) — s> sub® a(P¥)(-) > Ordgyg hy (-; p**)"/?,
seR(2(0);p")

where (-) = (1 + T(0), —a{“)(to +T(0),2(0))/3,E(0)). The repetition of the above
argument and (2.26) of [11] prove the assertion (ii). N
4. The Double Characteristic Factors

Fix j and ko so that 1 <j <Ny, 1 <ko<r(j) and m(j, ko) =2. In this
section we omit the subscript j and the superscript j in the same manner as in §2.
We also omit the superscript kyp until Lemma 4.3. Write
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p(tv T, é) (: pj.ko(thaé)) = Tz —‘—Cﬁ(l, é)T+a2(ta é)a
13(@ T; é) = P(Z7T - Cl](t, é)/zaé) = 72 - dZ(tv é)v
P(t7 T, é) = p(tv T, é) + q0(ta T, f) + 511(1, T»é)a

where ¢o(t,7,£) is positively homogeneous of degree 1 in (7,&) for [&| >1
and

i (1,8) = a1(1,¢)* /4 — ax(1,) (= 0),
g0(t,7,€) = bo(1,8) T+ bi(1,¢) € 71" ([0,01] x (T U (=D)\{0})),
q1(t,7,€) = o1, &)+ e1(1,8) € %7 ([0,01] x ((F U (=D)\{0})).
Here we assume that P(,7,&) (= P*(1,7,&)) is defined for &e (—T)\{0} as
stated in §2. We also write
do(1,7,€) = qo(t, 7 — a1 (1,£)/2,€) = bo(t,E)T + b (1,9,
bi(1,8) = bi(1,€) — ar(1,E)bo(1,¢) /2.
Note that
hi(t, T —a(t,€)/2,&p) = hi (1,7, p) = 20 + 2a(1,©).

Let 7€[0,6,/2], &®eTnS"! and 0 >0, and let T(0),Z,(0) € C*((0,0]) N
C([0,00]) (1 <! <n) be real-valued functions satisfying the condition (7,E).
(I) The case where a,(7,E(0)) # 0 in (z,0).
Applying the Weierstrass preparation theorem, we can write

no

ar(to+ 1,E(0)) = 0°d(1,0) [[(t — u(0)), d(1,0) #0

i=1

for (z,0) € [—00,00] x [0,0y], where 0 <oy <J; —ty and #;,(0) = #;(0;1),E). The
1;(0) can be expanded into convergent Puiseux series of @ in [0, 6], with a mod-
ification of 0y if necessary. Note that

Ao(2(0)) D {(to +Re 1,(0)),; 1 <i <no} (= Zo(2(0); p)) (0 € (0,00)).

(IT) The case where a,(z,2(0)) =0 in (7,0).
We have p(t,7,E(0)) = 7%, and put

%0(5(0),p) =g (C %0(5(9))), no=0 and [ = oo.
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Now we define
la (E ﬂ(l()a 607 T7 E‘)) = (Ord()lo &2(10 + T(0)7 E‘(O)))/za

1 (= w(10,E°, T, E)) = Ordg)o lﬂ(l_i{b) » |to + T(0) — sla(to + T(0),E(0)),
SeERy(2(0);

5 (=0(ty,&°, T,2)) = Ord min |t + T(0) — s
(=0(10, ¢ ) ‘”Osewsw);p)“ (0) — s

<: max Ordol()|lo + T(O) - (IO +Re ti(O))+|>v

1<i<ng
where
o(t, &) = by (1,&) + idai (1,€) /2

and 0 =0 in the case (II).

ProrosiTioN 4.1. If
(41) < /27
then the Cauchy problem (CP) is not C* well-posed or (CP) does not have finite
propagation property.

COROLLARY 4.2.  Assume that the Cauchy problem (CP) is C* well-posed and
has finite propagation property. Let (19,&°) € [0,01/2] x (' N.S""'). Then we have
ﬂ(ZOa éoa T7 E) < H (l07 éoa T7 E‘)

if T(0) and E(0) satisfy the condition (T,E).
In the rest of this section we shall prove Proposition 4.1. Assume that (4.1)

is satisfied. Then we have 0 < y; < o0 and 0 < i (< o). There is ¢y > 0 such
that

min |ty + T(0) — (to + Re 4;(0)), | = co0° for 0 [0,0,).

1<i<ng

In the case (II) we may take ¢ = 1 since ny = 0. For v € R we define 7,(0) by
(3.5). In the case (I) we have

x(to + T(0),2(0)) = 0% (d(v) + 0(1)) as 0|0,

where d(v) # 0 is a polynomial of v with real coefficients. It is obvious that
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d(v) >0 for ve[—co/2,co/2),
a1 + T,(0),2(0))"* = 0*(\/d(v) + o(1))
uniformly in v e [—co/2,¢0/2] as 0 | 0.
Noting that «(7,E(0)) # 0 in (z,0), we write
a1 + To(0),E(0)) = 07~ (di (v) + o(1)) as 010,

where fi; € Q and d(v) (# 0) is a polynomial of v. There are vy € (¢o/4,co/2) and
so >0 such that Iy = [vg — s, vo + So] C [co/4,c0/2] and

di(v) #0 for ve .

We replace T'(0) by Ty, (0). We note that 0 = ji; =0 and ¢p =1 if 1 = co. Then
we can assume that Iy = [—so, 5], ¢ = £ and g; < g Similarly, we make an
asymptotic change of variables as (3.6), where 6’ € (0,1), x> 0 and 6’k < 1. Let
K be a compact neighborhood of (#,0) in R x R”, and choose p, > 0 so that
(3.8) is satisfied. Define

1-0'k

P,(s,a,n) = P(t(s;p), p*a,p' 1),

and put

s

(s, y;p) = —p' " JO ay(t(u; p), E(p™)) duf2 + p**y - E(p~*),

E(s, yip, &, vo, ) = explie®(s, y; p) + ip™p(s; p)],
where ¢(s;p) (€ C*([—s0,50]) for p > p,) satisfies
0lp(s;p)| < C1 for 1€ Zy and (s;p™") € [=s0, 5] x (0,p"],
e==+1 and vy > 0. Applying the same argument as in (3.11), we have
P(s, Dy; p, Eyu(s) = E(s, ;p,v0,9) " Py(s, Dy, D,)(E(s, y; ps vo, 9)uls))
= E(s,0;p,v0,0) " P(t(5; ), p™ Dy, epE(p ™)) (E(s,0; p, vo, p)u(s))
= [P By (53p))? + e ()
+ 297 (05p) Dy + p* DT — p* (P ay (1))
— ip* T (02p) + p*Tbo(-) (050 + p " Dy)
+co(t(s: p), apE(p™))) (—epar () /2 + p* 050 + p**Dy)
+ai(t(s; p), epE(p~"))us),

[1]
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where () = (¢(s;p),2(p™*)). We choose
vo = (1 — pyrc — k) /2, &= (6 +min{g + 1,2}) "
Then we have
20k +2v9 =1 -k + 0Kk, 1 —0k=min{y + 1,/}x,
vo=min{l,a— u }c/2 (>0), vy <1/2,
20K + 2vg — (2 — 2jik) = 2vp — 2 min{1 + u; — i, 0}x = 2vyp.

Put

olsip) = | el alitusp) =) .

Here we have chosen ¢(s;p) and ¢ = +1 so that

Im(—e(p"*a(t(u; p), E(p™))]"* <0.
Writing u(s;p~') as (3.13), we obtain the following transport equations for
u(s; p=):

{20059 (5))Ds = i(070) + p~"bo(-) (s0) yurc (53 p7")
D3 — A (208G, (1) 4 () D,

+p 7% eo(-- ) (—epan (-) /2 + p™ 050 + pP D)

+p 2% (- Vi (s;p7Y) (k=0,1,2,...),
where (-) = (t(s;0),E(p7™)) and (---) = (¢(s;p),epE(p~™)). Note that, with some
C.>0,

oK

[(p%0,) " ci(t(s; p), epE(p ™)) < Cup"™ (1 =0, 1).

Therefore, applying the same argument as in §3 we can prove Proposition 4.1.
The same argument as in the proof of Lemma 3.6 and Proposition 4.1 prove the
following

LemmA 4.3. Assume that 1 < ko <r and m(ko) =2, and that (CP) is C*
well-posed and finite propagation property. Let (15,E%) €[0,61/2] x (TN S™1), and
let T(0) and E(0) satisfy the condition (T,E). Then we have
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Ordgy min  |to+ T(0) —s
) se%o(E(ﬂ);pkO)| 0=

x sub a(P)(to + T(0), —a*(to + T(0),E(0))/2,Z(0))

> Ordyo h_1(to + T(0), —al® (19 + T(0),E(0))/2,2(6)) ">

5. Proof of Theorem 1.1
Let n =2, and let (£, &%) € (0, 00) x S'. Let a(1,&) and b(t,&) be real analytic

functions defined in a conic neighborhood % of (fp,&%). We assume that
a(ty,E%) =0, a(1,&) >0, a(t,&) £0 in % and a(r,&) and b(r,&) are positively
homogeneous in & Choose ee S!, 6 = 5(t0,éo) > 0 and 6y = (1o, 60) > 0 so that
elZ° and

{(t,Eo(0)); (to — ), <t <ty+6 and |0] < 0p} C %,
where Z0(0) = Z0(0; &y, e) = (£° + 0e) /|E° + Oe|. We write

a’(1,0) = a(t,Zo(0)), b°(t,0) = b(1,Zo(0)).

Then we have

ao(l, 0) = Za2(1)9k7 “2,(1) #0,

where /y € Z,. By the Weierstrass preparation theorem there are ry € Z,, a real
analytic function ¢°(7,0) defined in [0, 6], real-valued continous functions t{(6)
and o2(0) (1 <k <ro) defined in [0,6] such that ¢°(z,0) > 0, t2(0) = a0(0) =0
(1 <k <rg), the 72(0) and () can be expanded into convergent Puiseux series

in [0, 6],
(0) <(0) < <10(0), op(0)=0 (1<k<r)
a®(1,0) = 02 (1,0) [ [{(t — 10 — 70(0))> + 00 (0)} (0 €0, 60)),
k=1
with a modification of 6y if necessary, where a°(z,0) = 0°c°(z,0) if ro = 0. Define

(5.1) d°(1,0) = ZOZH{ t—to—1)( 0))’ +al(0)} if ry > 1,

=1 [#k
gl it 1o <1

b

2(0;a°) = { {to +70(0) +iy/ad(0); 1 <k <o} if rg =1,
1%} if 1o =0.
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LEMMA 5.1. There is C > 0 such that

c! t—A\/d(t,0) < 1/a’(t,0) < C t— A /do(t, 0
min| I/ < \Ja*(1.0) min [ 7\/d(:.0)

Jor te|(ty —9),,to+ 6] and 0 € [0,00], with modifications of 6 and Oy if necessary,
where min, ¢ 4. 0\ |t — Al =1 if 19 = 0.

ProoF. When ry =0, the lemma is trivial. Assume that rp > 1, and fix
(,0) € [(to —6),,to +0] x [0,00]. We choose vy e N so that 1 <wvy <ry and

min |1 — 2> = (1 — 1o — 22 (0))* + a°. (6).
/16%(6;(10)| ‘ ( 0 TVO( )) O-vo()

Then we have

. 212 50 0 0
t— d (t,0) = ((t —tyg — 0 oNd'(t. 0
ie.l;/?(l(};lao)| /L| ( ’ ) (( 0 TVU( )) + Uw;( )) ( ; )

<rd®(1,0) <rg min |t — A*d°(1,0). 0
LeR(0;a")

Let 1 <k < ro. Suppose that b°(¢,0) # 0 in (,0). We note that 7, + 77 (0) > 0
if 0 < 0«1, since #p > 0. Applying the same argument as in §2 of [§], we can
write

o0

b0t +T0(0) + 1,0) ~ > B /(00" Bio() #0,

1=0

where LeN and v, €Q. We define the Newton polygon 1"}]}0‘ ¢ of
"b%(ty +70(0) + 1,0) for h=10,1,2 by

Thoe=ch| |J Ok + 1L 0+ )} +10,%0)%) |,
>0, ;<0

where

e, = Ordyjo B (1)

and ch[A] denotes the convex hull of A. If »°(z,0) =0 in (¢,0), we define
Fbo « = (see, also, §2 and §5 of [8]). We also denote by I'jo; the Newton
polygon of a°(ty + t(6) + 1,0).

LemmA 5.2 (Lemma 2.2 of [8]). Fix he{0,1,2}. The following two condi-
tions (i) and (ii) are equivalent:
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() If T(0) is a real valued continuous function defined in [0,0], T(0) €
C*((0,60]), T(0)=0, to+T(0) >0 for 8 (0,00] and T(0) can be
expanded into a formal Puiseux series, then

OrdmO{ min |7(0) - 20(0)|"16° (10 + T(0), U)I} > Ordgjo 1/ a’(to + T(0),0).

1<k<ry

(ii) 21",’;03,( CTpr (I <k<rg) (see, also, Lemma 3.3 of [10]).

LemMa 5.3. Fix he{0,1,2}. Assume that
2Ty CTuy (1 <k <r).
Then there is C >0 such that

min |1 — (10 + 7(0))|"[6°(2,0)]

1<k<ry
< Cy/a'(t,0) for te[(to—9),,to+0] and 0 € 0,0),
with modifications of 6 and 0y if necessary.

We proved Lemma 5.3 with 2 =1 in §5 of [§]. Lemma 5.3 with 2 = 0,2 can
be proved by the same arguments as in §5 of [§].

We assume that the Cauchy problem (CP) is C* well-posed and has finite
propagation property. We factorize p(z,7,&) as (2.1):

p(t,7,8) = Hp (t,7,8) for (1,7,&) e[0,01] x R x (T;ns"1)

(1<j<Ny). Fix j so that 1<j< Ny Assume that 1<k <r(j) and

m(j,ko) = 3. Until the end of this section we omit the subscript j and the
superscript j in the same manner as in §2. Now assume that Ak“(t, &) #£0in (1,8).
It follows from (2.13), (3.3), Corollary 3.2 and Lemmas 5.2 and 5.3 that (2.8) and
(2.19) of [11] with 2(&) replaced by Zo(&) hold for k = k.

LEmMA 5.4. Let (t9,&") € (0,0,/2) x (TN S™ 1Y), and let T(0) € C*((0,0)) N
C([0,00]) be a real-valued function satisfying the following:

T(0)=0, th+T(®) >0 for0el0,0) and

T(0) can be expanded into a formal Puiseux series.
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Then we have

(5.2) Ordglo{ min |ty + T(0) — s

s€Ry(Eo; p*0)

x sub a(P*)(to + T(0), (a5°(1)/2)'” — af*()/3,Z0 (0 >>A§°<'>}

> Ordgyo(DY()ak ()2,

where () = (to + T(0),Eo(0)).

ProOF. (2.44) yields

(@5 (1,8)/3)ha(t, (@5 (1,€)/2)' 1, & p*)'* < (DR (1, €) (a0 (1,€)/3)) /2.
This, with Corollary 3.2, yields

Ordglo{ min |l0 + T(Q) — S|
s€Ro(Z9;p*0)

x sub a(P*)(1o + T(0), 4% () = ay"(-) /3, é0(9))&?“(')}

> Ordyyo (DY ()ak ()2,

where (-) = (1o + T(0),Z0(0)). Therefore, the lemma easily follows from (2.13)
and (2.33)-(2.35). U

We may assume that Di°(z,&) # 0 in (£,&). Indeed, if D5(z,&) =0 in (1, &),
then Lemma 5.4 implies that sub a(P%)(z, (a%(z, E)/Z)l/3 al(1,6)/3,6) =0 in
(t,¢) and, therefore, (2.7) holds. Taking a°(z,0) = Dk"( 1, %o (0))Ak”(t Z0(0)) in
Lemma 5.1, Lemma 5.1 implies that (2.7) are valid if and only if

|(a5° (-) sub a(P* (1, (a5 (-)/2)'" = af*(1)/3,50(0))*| < d°(1,0)

for each (ty,E") € [0,01] x S~ with D{*(19,&°) = 0 and (¢,0) € [(to — ), , to + )]
x [—0o, 0o), where (-) = (1,29(0)) and d°(z,0) is defined by (5.1), since #(0;a") =
R0(Z0(0); p*). Choose LeN so that t¥(st) +i\/a?(sL) (1 <I<ry) are real
analytic in a neighborhood of s =0. We put

d(t,s) = d°(t,s%), a(t,s) = a5 (1,Ep(s)) /2
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which are real analytic in (¢,s). Moreover, d(t,s) is a polynomial of z. Note
that d(z,s) depends on (1o,E%). It follows from Hironaka’s resolution theorem
that for each (1o,&%) € (0,6,/2] x §"~' with Dé‘“(to,fo) =0 there are an open
neighborhood U(#) of (t,5) = (#,0) in (0,0;] x R, a real analytic manifold
U(ty), a proper analytic mapping ¢ = ¢(ty) : U(to) 3 it — (@) (= ¢(it; 1)) € U(to)
satisfying the following:
(i) ¢: U(to)\d — U(ty)\4 is an isomorphism, where A4 = {(1,5) € U(t);
a(t,s) =0} and 4 = ¢ 1 (A).
(ii) For each pe U(ty) there are local analytic coordinates X (= X7) =
(X1, X>) (= (X7, X2)) centered at p, x1,x3 € Z, a neighborhood U(ty; p)
of p and a real analytic function e(X) in V(ty; p) such that e(X) # 0 in

V(ty; p) and
a(p(@)) = e(X (@)X, (@)" X2(@)" (@€ Uto; p)),

where V(to; p) = {X (&); &t € U(to; p)} (see [1]).
Define ¢ (= ¢(t0; p)) : V(to;p) — Ulto) by (X (@)) (= ¢(X7(@); 10, p)) = 0(&)
(= p(it; 19)) for @ e U(ty; p). Then we have

a(p(X)) = e(X) X" X;” (X € V(10; p))-
Putting X; = X} (I =1,2), we have
Zz((pO(X’))l/3 _ e(A}l37A723)1/3A71K1)22K2 (X' c Vo(lo;p)),

where ¢°(X) = ¢(X}, X5) and V°(19; p)
Put U(t; p) = {p(a); a € Ulto; p)}, a’(
s(X)). Then

(5.3) min min [t—0|,1
ve Ao (Eo(st);p*o)

x Jsub a(P*) (1, (a5 (-)/2)" — af* (1) /3, Zo(s"))]
< Cho(1,(a5°()/2) " Bo(s7); p*) ' for (1,5) € Ulto; p)
if and only if

(5.4) |B(X)?| < Cd(1(X),s(X)) for X e V(1y: p),

where () = (1,2o(s%)) and
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B(X) = alo () sub o(P9)(1(X),a"(X) — al° (), Eo(s(X)")),

() = (1(X), B (s(X)")).

Note that d(7(X),s(X)) and B(X) are real analytic in V°(z; p). Let X(6) be real
analytic near € = 0. Then it follows from (5.2) that

Ordyo d(t(X(0)),s(X(0)))/2 < Ordgo B(X(0)).

Lemmas 5.2 and 5.3 with 5%ty +1,0) = B(X), a°(to +t,0) = d(¢(X),s(X)),
(,0) = X and h = 0 yield (5.4) and, then, (5.3). Let I be a compact sub-interval
of (0,01/2]. Applying compactness argument, we can prove that (2.7) holds with
[0,01] and 2(&) replaced by I and %o(&; p*), respectively. Therefore, Lemma 2.2
shows that (2.6) holds with [0,0;] and %(¢) replaced by I and %(&), respectively.
Next assume that @°(1,¢) =0 in (¢,¢). Then (2.13) and (2.14) yield D¥(z,¢)
(= D" (1,£) =0 in (¢,&). Similarly, (2.6), and (2.19) of [11] hold with (&)
replaced by Zo(&). Let 1 <j< Ny and 1 <ko<r(j) satisty m(j, ko) =2.
Applying Corollary 4.2 and the same argument as before, we can prove that
(2.36) with 2(&) replaced by %y(&) holds. Since (2.19) of [11] holds with 2(¢&)
and [0,0;] replaced by %,(¢) and I, respectively, as proved above, Lemma 2.5 of
[11] proves Theorem 1.1 with 7 C (0,01/2]. The interval (0,,/2] is determined by
the factorization (2.1). So, finally one can prove Theorem 1.1 (with any compact
interval I C (0, o0)).

6. Proof of Theorem 1.2

Assume that the hypotheses of Theorem 1.2 are fulfilled. Let 1 < j < Ny, and
let (t9,¢") €[0,61/2] x (T;NS"1). We fix /=1 or 2. Let h(t,¢) be defined in a
semi-algebraic set U in R"*!. Then we say that /(z,&) is a semi-algebraic function
if the graph of A(t,&) is a semi-algebraic set. Let a(z,&) and b(z,&) be semi-
algebraic functions defined in a conic neighborhood of (7o, £"). We assume that
a(1,€) and b(1,&) are positively homogeneous in &, a(z,&) > 0 and a(to, %) = 0.
Choose 6 > 0 so that

Dy = {(1.8); |t — o> +1¢ — &P <% 1] = 1 and 1> 0} € [0,6)] x .

We may assume that a(z,{) and b(¢,&) are defined in Dy. Then we say that the
condition (A4-B), is satisfied if

(4-B), there are o € (0,6 and C > 0 satisfying

min{ min |t—s|’,l}|b(z,é)| < CVa(1,&) for (1,&) e Ds.

seR(E)
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LemMMA 6.1. Assume that the condition (A-B), is not satisfied. Then there
are 0y >0, T)(0),ZL(0) € C*((0,060]) N C([0,00]) (1 <k <n) such that T)(0) and
2(0) (= (B1(0),...,EN0))) satisfy the condition (T,Z) and

seR(E(

(6.1)  Ordygo min{ min |t + T7(0) —s|', 1}|b()| < (Ordgyo a(+))/2,
0))
where (-) = (to + T1(0),Z'(0)).
PrOOF. Let o € (0,5]. Define

A={(t,§,y) e Ds xR; y = a(1,&)},

B={(1,¢,y) e Ds x R; y = |b(1,)|*},

Cz:{(t,é,y)eD‘; X R; y:min{ min |Z—S21,1}}.

seAy (&)

It is obvious that 4 and B are semi-algebraic sets. Put

[1]

0={EeS" &~ &% <6 and Dy(s,&) # 0 for some s € [0,0)},
B ={¢eS" 1€ <6, Dy iii(s,€) =0 for any se0,00) and
Dyri(s0,&) #0 for some sp€[0,00)} (1 <k <M).

Since the Dy (t,&) are semi-algebraic, the E; are semi-algebraic set, Z, N E, = J
if 4+ v, and

M
Usi={ces" e - <}
k=0
Choose ' € (0,1] so that
{t+iteC;te[-6",tp+2],7eR and |7] <’} C Q,
where Q is the complex neighborhood of [0, 00) as appears in §1. We define
Y = {(l, f) eR x Sn_l; ¢ e By, DMfk(fl + i‘L’,f) =0,1¢€e [—5,, to + 2],

€[00, 20,3 =1 and t= (11 +1)/2} (0<k<M),

M
g = U Y.
k=0
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Note that 9, = . Then we have
C={(t,¢y)eDs; “(8&E e or s=t—17",
|t —s|* > |t — §* for any (s,&) e Z and y = |r— §*}.
This shows that C; is a semi-algebraic set. Put
A= {(p,t,&,2) e R"™3; there are y,u,v,w € R satisfying
(1,5, y)ed, (t,&u) e B, (1,¢,0) € Cr, py =1,
w((|t = to]* +1& = & )puv + 1) = 1 and 4 = puvw}.

Then A; is semi-algebraic and

A= {(p,nf,i) eR x Ds xR; pa(t,£) =1, and

2 pmin{ min_ |7 — s|%, 1}|b(t, a2

seRy(&)

-1
x<(|t—to|2+f—£0|2)pmin{ min |z_s21,1}|b(z,5)2+1> }
s€Ry(&)
For p > 0 we define

K(p) = {(t,¢) € Ds; pa(t,&) = 1}.

Then K(p) is compact and there is p, > 0 such that K(p) # & for p > p,.
Indeed, we can take

pi = max{a(t,); (1,¢) € Dy},
since a(ty, %) = 0. This yields
{peR; (p,t,&, ) e A; for some (¢, 7) e R"™™2} D {p; p=py}.
Therefore, we can define
(6.2)  fi(p) = sup{%; (p,1,&, 1) € Ay for some (1,&) e R™™} for p > py.

Note that

)

filp) = max{ p min{min,c s, ot — 5|, 1}1b(1, )
| (= 10l + 1€ = %) min{min, g,(e |1 — s/, 1}6(1, )7 + 1)

(t,€) eK(p)}7
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since K(p) is compact. It follows from Theorem A.2.8 of [3] that there are
&l !

continuous functions Tj(p), Z'(p) and 4(p) such that Ti(p), E'(p) and 4(p) can
be expanded into convergent Puiseux series for p > 1 and

(6.3) (p:to + Ti(p), B (p). u(p) € A1, filp) = Jalp) (= 0)
(see, also, [7]). Since the condition (4-B), does not hold, there is {(#,&*)} C Ds

satisfying (1, &%) — (to, &%) and

(6.4) min{ min tk—s|l,1}|b(tk,ék)|/a(tk,ék)l/2 — o as k— .

seRo(EF)

Put & = (|tr — to]* + €K = 1)V and p, = a(t, &)™, Then we have 6 — 0
and p, — o as k — oo. (6.3), together with (6.2) and (6.4), gives

)vl(pk)ZPkmin{ min |t — s/, 1}|b( L E9?

seRo(E A)

seRo(EF)

-1
X (5,%,0,( min{ min |t — s|%, 1}|b(tk,§k)|2+ 1) — o0 as k— oo,

since 9 — 0 and p, min{min _, .|t — s 1Y b(tr, E9))* — 0 as k — o0, So
we have 4;(p) — o0 as p — oo, Wthh implies that

min{ min |to+Tl(p)—s|l71}

seRo(E(p))
x |b(to + Ti(p), E'(p))|alte + Ti(p),E' (p)) "> — o0,

(Ti(p). E'(p)) — (0,¢°)

as p — oo. There is L € N such that Z’ (p) is real analytic in p (> /’o ) We put
T)(0) = T1(0~%) and E'(0) = E'(07%). Here, if 1y + T)(0) =0, then we replace
Ti(0) by Ti(0) + 0", where N » 1. We note that Z/(0) (1 <k <n) are real
analytic in 0 € [0, 6], where 0, :po_l/L. Then we have (6.1). O

First we assume that 1 < ko < r(j) and m(j, ko) = 3. We take

{a([’ é) = hm,l(t,A/ka(t é) j ko(t é)/3 é)
b(t,&) = sub a(P)(t, A7 (1,&) — a™(1,€)/3,¢)

and /=1, where
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APR(1,8) = v (€)@ (1,€)/3)'2,

) 1 AJ ko( é)
Jrko _
v (Zvé) {1 lf Alk()( é)

(see (2.11)). It is easy to see that the coefficients of the polynomial p/:(¢,7,¢)
of 7 are semi-algebraic. It follows from Lemma 6.1 that there are 0y >0,
T(0),Ek(0) e C*((0,00]) N C([0,00]) (1 <k <mn) such that T(0) and E(0)
(= (Bi(0),...,E,4(0))) satisty the condition (7,Z) and

Ordgio{min{ mmﬁ)) [to + T(0) — s, 1}

SE /fo

s« sub o(P)(to + T(0), A7) — al (/3,2 <>>}

< Ordyjo h_1(to + T(6), A7 () — al ™ () /3,2(6)) "/

if the condition (A4-B), is not satisfied, where (-) = (¢ + T(0),E(0)). Therefore,
Lemma 3.6 implies that the condition (4-B), is satisfied if the Cauchy problem
(CP) is C* well-posed and has finite propagation property. Next we take

a(t,&) = a3 (1.9),

b(1,&) = (2 sub o(P))(1, A7 (1,8) — al *(1,€)/3,¢)
and / = 1. Similarly, we can see that the condition (4-B), is satisfied if a(z, &) and
b(t,&) are given by (6.5) and (CP) is C* well-posed and has finite propagation
property. Let z = (t, 79, &%) satisfy (0“p)(z°) =0 (#=0,1,2) and p*(z°) = 0.
We take

a(lv f) = hm_z(l, —da (la f; ZO)/3’ é)a
(66) {bu, &) = Ot —ar (1,5 9)/3,6:2")

and /= 2. It is easy to see that the coefficients of the polynomials p(t,t,&;z%)

(6.5)

and Q(t,7,&;z%) of t are semi-algebraic. Similarly, we can see that the condition

(4-B), is satisfied if a(z,&) and b(¢,¢) are given by (6.6) and (CP) is C* well-

posed and has finite propagation property. This implies that (L-2) for [0,0,/2] is

satisfied if (L-1) for [0,0;/2] is satisfied. Now we assume that 1 < ko < r(j) and
m(j, ko) =2. We take

(67) { a(1,) = 1, —al*(1,6)/2,2),
' b(1, &) = sub a(P)(t,—al ™ (1,¢)/2,¢)
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and /= 1. Repetition of the above argument and Lemma 4.3 shows that the
condition (4-B), is satisfied if a(z,&) and b(¢, &) are given by (6.7) and (CP) is C*
well-posed and has finite propagation property. It follows from the above results
and Lemma 2.3 of [11] that (2.9), (2.10) and (2.37) hold for (¢,¢&) € [0,0,/2] x
(I; N S"1), since

ha(t, A7K(1,8) — a " (1,8) /3, & p™) & i (1, A7 (1,E) — al*(1,¢)/3,€)

for (£,&)e[0,61] x (I;NS™ 1) if 1<j<Ny, 1<k<r(j) and m(j,k)=3,
and

245 (1,8) (= hi(t,—a] " (1,)/2,& p)) x By (1, —a] ™  (1,8) )2, &)

for (¢,&) € [0,61] x ([;NS" 1) if 1 < j < Ny, 1 <k <r(j)and m(j, k) = 2. There-
fore, Lemma 2.5 of [11] implies that (L-1) for [0,0,/2] is satisfied, which proves
Theorem 1.2 with T =0,/2. The interval [0,0,/2] is determined by the facto-
rization (2.1). So, finally one can prove Theorem 1.2 (with I =[0,7] for any
T > 0).
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